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We study multifractal spectra of critical wave functions at the integer quantum Hall plateau transition

using the Chalker-Coddington network model. Our numerical results provide important new constraints

which any critical theory for the transition will have to satisfy. We find a nonparabolic multifractal

spectrum and determine the ratio of boundary to bulk multifractal exponents. Our results rule out an

exactly parabolic spectrum that has been the centerpiece in a number of proposals for critical field theories

of the transition. In addition, we demonstrate analytically exact parabolicity of the related boundary

spectra in the two-dimensional chiral orthogonal ‘‘Gade-Wegner’’ symmetry class.
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The physics of the quantum Hall effect has been an
exciting area of research for more than two decades
[1,2]. While much progress has been made in this area,
the identification of an analytically tractable theory de-
scribing the critical properties at the transitions between
the plateaus in the integer quantum Hall (IQH) effect has
been elusive ever since [3]. These quantum phase transi-
tions are famous examples of (Anderson) localization-
delocalization (LD) transitions driven by disorder. The
diverging localization length plays the role of a correlation
length in nonrandom continuous phase transitions, known
to be described by conformal field theories in two dimen-
sions (2D). It is natural to expect that effective (field)
theories describing IQH plateau transitions should gener-
ally also possess conformal symmetry (cf. [4]).

Many attempts have been made in the past to identify an
analytically tractable description of the IQH plateau tran-
sition, and, more recently, Wess-Zumino (WZ) field theo-
ries defined on a certain supermanifold were conjectured to
provide such a description [5–7]. (Similar theories have
also appeared in the context of string propagation in anti-
de Sitter space-time [8].) These proposals focused solely
on bulk observables, i.e., on physical quantities measured
in a sample without any boundaries. In this Letter, we
provide important new constraints that arise when one
studies the scaling behavior of wave functions near the
boundaries of a sample. Any proposed candidate theory for
the plateau transitions will have to be consistent with our
numerical results for the boundary multifractal spectrum.

At LD transitions, critical wave functions obey scale-
invariant, multifractal (MF) statistics; namely, disorder-
averaged moments of wave functions have a power-law
dependence on the linear dimension L of the system [9]:

j ðrÞj2q=ðj ðrÞj2Þq ¼ CxqðLÞL��x
q : (1)

TheMF exponents�x
q, which are related to (‘‘anomalous’’)

scaling dimensions of certain operators in an underlying

field theory [10], can be defined for points r in the bulk
(x ¼ b) of the sample �b

q or near its boundary (‘‘surface’’:

x ¼ s) [4,11] �s
q. The prefactor CxqðLÞ in Eq. (1) depends

on q and, in general, on L if we include the possibility of
corrections to scaling. Both sets of MF exponents satisfy
the symmetry relation [12]

�x
q ¼ �x

1�q (2)

(in some interval [4] around q ¼ 1=2).
Equivalently, the MF wave functions can be character-

ized by the so-called singularity spectra fxð�xÞ related to
�x
q by a Legendre transform: fxð�xqÞ ¼ ð�xq � 2Þq� �x

q þ
dx, �

x
q � 2 ¼ d�x

q=dq, and db ¼ 2, ds ¼ 1. The exponent

�x0 describes the scaling of typical wave functions:

lnj ðrÞj2 ���x0 lnL, as can be seen by taking the q de-

rivative in Eq. (1) at q ¼ 0.
Work emerging [13,14] from Ref. [5] led to the con-

jecture that the proposed theory would give rise to an
exactly parabolic bulk MF spectrum for the IQH transition

�b
q ¼ �bqð1� qÞ; (3)

reminiscent of analytically obtained MF spectra for Dirac
fermions in, e.g., random Abelian gauge potentials [15,16].
In those models, the parabolicity of the MF spectrum can
be understood through a reformulation of the problem in
terms of free fields.
Previous numerical studies [13] of wave function statis-

tics at the IQH transition appeared to exhibit a bulk MF
spectrum that was indeed well described (with an accuracy
of �1%) by a parabolic fit (3) with �b ¼ 0:262� 0:003,
seemingly providing support for the conjectures advanced
in Refs. [5–7]. [In Ref. [13], the results are presented in
terms of fbð�Þ. For a parabolic MF spectrum (3), fbð�bÞ is
also parabolic, with a maximum at �b0 ¼ �b þ 2.]
Besides its conjectured relevance [5] to the IQH tran-

sition, the above-mentioned WZ theory is known to de-
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scribe transport properties of a disordered electronic sys-
tem in a different universality class [17,18] (the chiral
unitary Gade-Wegner class AIII of Refs. [19,20]) which
possesses an additional discrete (chiral) symmetry [19], not
present in microscopic models for the IQH transition.
Well-known microscopic realizations of field theories in
class AIII are random bipartite hopping models and certain
network models [17,18,21]. The theory possesses a line of
fixed points, with continuously varying critical properties
parametrized by the critical longitudinal DC conductivity.
(It was argued in Ref. [5] that, for a particular value of this
continuous parameter, the WZ theory would provide a
description of the IQH transition.)

In this Letter, we obtain two kinds of results. First, we
provide results of extensive numerical work on the MF
exponents at the IQH transition both at a boundary (�s

q)

and in the bulk (�b
q). Based on these numerical results,

quadratic behavior in q is ruled out for both quantities.
Deviations from the parabolic form (3) are found to be
much larger in the MF exponents �s

q at a boundary. Here it

is important to note that, in complete analogy to the bulk,
the above conjectures would also yield a quadratic depen-
dence on q of the boundary MF exponents �s

q. We further

determine the ratio �s
q=�

b
q over a range of q. Accounting

for this ratio is an important constraint on any proposed
critical theory for the transition.

Second, we demonstrate analytically the exact parabo-
licity of boundary spectra, not for the chiral unitary class
AIII, but for the related time-reversal invariant version, the
chiral orthogonal Gade-Wegner class BDI [17–19,21]. We
expect such parabolicity to also hold in the chiral unitary
symmetry class.

We begin with the numerical part. Here we study the
multifractality of critical wave functions in a way similar to
Ref. [13], with the goal of numerically determining the
rescaled anomalous exponents

�xq ¼ �x
q=qð1� qÞ; (4)

for both x ¼ s (boundary) and x ¼ b (bulk).
For the case of boundary exponents, we consider the

critical Chalker-Coddington network model (CCNM) [22]
with 4L2 links placed on a cylinder. The dynamics of wave
functions on links of the network is governed by a unitary
evolution operator U. For each disorder realization, we
numerically diagonalize U and retain one critical wave
function whose eigenvalue is closest to 1. The largest
system size we studied was L ¼ 180, and the ensemble
average was taken over 3� 105 samples for L ¼ 50; 60,
5� 105 samples for L ¼ 80, and 2� 105 samples for L ¼
120; 180.

We obtain the anomalous dimensions �s
q from Eq. (1).

The boundary wave function coarse-grained over each
plaquette along the boundary is substituted into the left-
hand side of Eq. (1), where the overline denotes ensemble
and spatial averages along the boundary. Taking the loga-

rithm, we numerically obtain Ds
qðLÞ � ðq lnj ðrÞj2 �

lnj ðrÞj2qÞ= lnL ¼ �s
q � lnCsqðLÞ= lnL and plot this quan-

tity as a function of 1= lnL in Fig. 1. We see that corrections
to scaling are significant for small systems (L & 30).
Therefore, we used our numerical data for L � 50 only
to extract �sq by linear fitting.

Independently, we numerically obtain �sq and fs from

j ðrÞj2q lnj ðrÞj2=j ðrÞj2q ���sq lnL and lnj ðrÞj2q �
½fsð�sqÞ � �sqq� ds� lnL, using our numerical data for

L � 50. For example, the exponent �s0 is obtained by

linear fitting (Fig. 1), As � �lnj ðrÞj2= lnL ¼ �s0 þ
const= lnL, which yields �s0 ¼ 2:386� 0:004.
We show in Fig. 2(a) the rescaled boundary anomalous

dimension �sq (solid red circles) obtained from this analy-

sis. We see clearly that �sq is not constant, implying that the

boundary MF spectrum �s
q is not parabolic. The change in

�sq over the interval 0< q � 1=2 is about 4%–5% and is

significantly larger than the error bars. This provides the
strongest numerical evidence against the parabolicity of
the MF exponents.
Shown in the same figure by open blue circles is the

mirror image of �sq with respect to q ¼ 1=2, �s1�q. We see

that the symmetry relation (2) is satisfied within error bars
for 0 & q & 1. The rescaled anomalous dimension �sq
approaches �s0 � 2 (the horizontal line) at q ¼ 0; 1, indi-
cating that the two independent calculations of �s0 and �s

q

are consistent.
We have also computed the bulk anomalous dimension

�b
q using the CCNM on a torus. In this case, the overline in

Eq. (1) implies both the ensemble and the spatial average
over the whole torus. Wave functions are coarse-grained on
each plaquette. We have employed the same fitting proce-
dure as in the boundary case. The biggest system size we
examined for the bulk analysis is L ¼ 270. The number of
samples over which we took the average is 5� 105 for L ¼
50, 3� 105 for L ¼ 60; 80, 2� 105 for L ¼ 120, 4� 104

for L ¼ 180, and 2� 104 for L ¼ 270.

FIG. 1 (color online). System size dependence of
Ds
qðLÞ=qð1� qÞ defined in the main text for q ¼ �0:2 (j),

0.2 (d), 0.5 (m), 0.8 (	), and 1.2 (h). �sq is calculated by linear

fitting taking into account only for larger system sizes (L � 50)
indicated by the vertical dashed line between L ¼ 40 and 50. We
also show As � 2 defined in the main text (� ).
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Figure 2(b) shows the exponents �bq, together with their

mirror image. The symmetry relation (2) is again satisfied
for 0 & q & 1 within error bars, which provides confirma-
tion that our results are reliable. We see clearly that �bq has

q dependence, although it is weaker than that of �sq;

compare the vertical scales of Figs. 2(a) and 2(b).
The ratio �sq=�

b
q is shown in Fig. 2(c) and is seen to be

clearly dependent on q. Any candidate theory for the IQH
transition needs to be consistent with this ratio and, in
particular, its dependence on q. (Note that for a free field
this ratio would be equal to 2 and independent of q
[11,23].)

Figure 3(a) shows �xq as a function of q. The data

significantly deviate from linear behavior that would result
if �x

q were strictly parabolic (constant �
x
q). In Fig. 3(b), we

show the corresponding singularity spectra fxð�xqÞ as func-
tions of q. [Combining the data from the two panels would
result in fxð�xÞ as functions of �x.] For q * 1:5 where

fsð�sÞ< 0, the moments j ðrÞj2q are dominated by rare
events, and thus accurate numerical calculation of MF

exponents becomes more difficult [9]. This explains the
discrepancy between the (red) data points and the solid
curves for q * 1:5 in Fig. 3. As fsq > 0 at q * �1, we

expect that our numerical results of fsð�sÞ should be more
reliable at q 
 �1 than at q 
 1:5, as evidenced by the
agreement between the red dots and the solid curve in
Fig. 3. The curve suggests termination of fsð�sÞ [9] to
occur at q 
 2:2.
We now proceed to present our second (analytical)

result. We first recall that the theory conjectured in
Ref. [5] to describe the IQH plateau transition is a WZ
model with global pslð2j2Þ (super)symmetry. This theory
possesses two coupling constants: one denoted by f for the
kinetic term and another denoted by k for the WZ term
(k ¼ 1 in Ref. [5]), in standard notation [5,24]. One can
think of this theory as a perturbation of the rather well
understood [24,25] Kac-Moody (KM) point characterized
by the condition f�2 ¼ k, perturbed by a term in the action
of the form [24,26] �S ¼ ð�=k2ÞRd2z�abðz; �zÞJaðzÞ �Jbð�zÞ,
where � ¼ f�2 � k. Here �ab is the KM primary field in
the adjoint representation of pslð2j2Þ, Ja and �Jb are the left
and right chiral components of the pslð2j2Þ Noether cur-
rents [24], respectively, and � parametrizes the line of fixed
points, mentioned above.
The conjectured link [5] between the WZ model and the

IQH transition can be formulated through the notion of the
point contact conductance (PCC) [27]. The PCC is a
statistically fluctuating quantity. (i) On one hand, the scal-
ing dimension Xq of the qth moment of the PCC at the IQH

transition has been proven to be simply related to the
exponent �q [13,14], Xq ¼ 2�q (jqj< 1=2). (ii) On the

other hand, the scaling dimension xq of the operator in the

WZ model carrying the same representation of the global
pslð2j2Þ symmetry as the qth moment of the PCC in the
CCNM (possessing the same pslð2j2Þ symmetry) was con-
jectured [5] to be a quadratic function of q. (iii) If one

FIG. 3 (color online). (a) �sq (d) and �bq (	) as functions of q;
(b) fsq (d) and fbq (	) as functions of q. The solid and dashed

curves on both panels are obtained from the parabolic approx-
imations to �xq (that is, quartic approximations to �x

q). Notice

that �xq significantly deviate from straight lines which would

follow from strictly parabolic �x
q (or constant �xq).

FIG. 2 (color online). (a) Rescaled boundary MF exponents �sq
(d) and �s1�q (	). The curve is 0:370þ 0:042ðq� 1=2Þ2,
obtained by fitting the data for �sq in 0< q< 1 to a parabolic

form. The horizontal solid line shows �s0 � 2 ¼ 0:386� 0:004
with error bars indicated by dashed lines, which is consistent
with limq!0;1�

s
q. (b) Rescaled bulk MF exponents �bq (d) and

�b1�q (	). The curve is 0:2599þ 0:0065ðq� 1=2Þ2, obtained by

fitting the data for �bq in 0< q< 1 to a parabolic form. The

horizontal solid line shows �b0 � 2 ¼ 0:2617� 0:0006 with

error bars indicated by dashed lines. (c) Ratios �sq=�
b
q (d) and

�s1�q=�
b
1�q (	). As above, the curve is obtained from the

parabolic fits for �s;bq , which amounts to quartic approximations
for �s;b

q .
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combines (i) and (ii), and if one assumes Xq ¼ xq (follow-

ing the conjectured description of the IQH transition by the
WZ model), then the wave function exponents �q at the

IQH transition would be quadratic functions of q, as in
Eq. (3).

As already mentioned, this WZ theory is known to
describe transport properties of the chiral unitary class
AIII [17,18,21], lacking time-reversal symmetry. Below,
we demonstrate the correctness of the conjecture made in
item (ii) above, at a boundary, and for the time-reversal
invariant version of the AIII model, the chiral orthogonal
class BDI [17,19]. Just as its cousin with broken time-
reversal symmetry, the chiral orthogonal theory also pos-
sesses a line of fixed points. Transport properties along this
line can be described [18] by the perturbation of the KM
point of the pslð2j2Þ-invariant WZ theory described above,
when the field �ab is replaced by the Kronecker delta �ab

! �ab. Denote the corresponding coupling constant by �t.
Consider the theory in the upper half plane, where the
system simply ends at the boundary, and an operator of
scaling dimension (a ‘‘conformal weight’’) xs�ð�tÞ on the

boundary. At the KM point, where the perturbation van-
ishes, �t ¼ 0, and such an operator is described by a
representation � of the global pslð2j2Þ symmetry. It is

known [24] that xs�ð�t ¼ 0Þ ¼ Cð2Þ
� =k, where C

ð2Þ
� is the

quadratic Casimir invariant in the representation �. It turns
out to be straightforward [28] to compute the change of the
scaling dimension, order by order in the bulk coupling
constant �t, yielding a geometric series. The result is

simply xs�ð�tÞ ¼ Cð2Þ
� =ðkþ �tÞ. Note that, for the (continu-

ous series) representation � of pslð2j2Þ in which the qth
moment of the PCC at the IQH transition transforms, one

has Cð2Þ
� ¼ qð1� qÞ. This proves our claim that the spec-

trum of scaling dimensions xs� ! xsq of corresponding

boundary operators in symmetry class BDI is a strictly
quadratic function of q.

In summary, our numerical results clearly demonstrate
that both the boundary and the bulk MF spectra �s

q and �
b
q

significantly deviate from parabolicity and that their
q-dependent ratio is significantly different from 2. (These
conclusions were recently also reached, independently, by
Evers, Mildenberger, andMirlin [29].) These results for the
bulk as well as the boundary MF spectra impose important
constraints on any analytical theory for the IQH plateau
transition. Furthermore, we have demonstrated analytically
exact parabolicity of related boundary spectra in the 2D
chiral orthogonal Gade-Wegner symmetry class BDI.
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