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We study the multifractality (MF) of critical wave functions at boundaries and corners at the metal-
insulator transition (MIT) for noninteracting electrons in the two-dimensional (2D) spin-orbit (symplectic)
universality class. We find that the MF exponents near a boundary are different from those in the bulk. The
exponents at a corner are found to be directly related to those at a straight boundary through a relation
arising from conformal invariance. This provides direct numerical evidence for conformal invariance at
the 2D spin-orbit MIT. The presence of boundaries modifies the MF of the whole sample even in the
thermodynamic limit.
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Anderson metal-insulator transitions (MITs), i.e.,
localization-delocalization transitions of noninteracting
electrons, are continuous phase transitions driven by dis-
order. At the transition, wave functions (WFs) are neither
localized nor simply extended, but are complicated scale
invariant fractals exhibiting multifractal behavior charac-
terized by a continuous set of scaling exponents [1–4]. In
two dimensions the universal critical properties at a host of
conventional phase transitions are known to be described
by conformal field theories (CFTs) [5]. It is natural to
expect that disorder-averaged observables at a localization
transition in 2D are also governed by a CFT. If so, then
conformal symmetry should impose severe constraints on
averages of local quantities, including moments of WF
amplitudes.

In a recent Letter, Subramaniam et al. [6] extended the
notion of multifractality (MF) to the boundaries of the
sample (‘‘surface MF’’), and showed that near boundaries
critical WFs are characterized by MF exponents that are
different from those in the bulk. Moreover, it was predicted
that the MF of the entire system depends crucially on the
presence or absence of boundaries, even in the thermody-
namic limit. In this Letter we study surface MF at the MIT
in 2D for noninteracting electrons with spin-orbit scatter-
ing (symplectic universality class) [7], and extend the
surface MF analysis to boundaries with corners (‘‘corner
MF’’). Conformal symmetry, if present, would lead (fol-
lowing [8]) to a simple exact prediction relating corner and
surface MF exponents. Here, we show numerically that at
the 2D spin-orbit MIT this prediction is indeed valid,
thereby providing direct evidence for the presence of con-
formal symmetry at this MIT. We also confirm the depen-
dence of the MF of the whole system on the presence of
boundaries, as predicted in [6].

We begin by introducing corner and surface MF [6,9] for
a rhombus [Fig. 1(a)] and a cylinder [Fig. 1(b)], both
having edges of length L. All WFs  �r� vanish at the

boundaries. We define the corner (�) with opening angle
�, surface (s), and bulk (b) regions of the rhombus, and
similar regions s, b of the cylinder, as illustrated in Fig. 1.
In each region �, s, or b, the MF of WFs is characterized by
the scaling of the moments of j �r�j2 with the system size
L [all WFs  �r� are normalized],

 Ldx j �r�j2q � L��
x
q ; �x � �; s; b; w�; (1)

where dx is the spatial dimension of each region (db � 2,
ds � 1, and d� � 0). The overbar represents the ensemble
(disorder) average and the simultaneous spatial average
over a region x surrounding the point r. �bq, �sq, and ��q
are the bulk, surface, and corner MF exponents, respec-
tively. By x � w we label quantities computed by spatially
averaging over the whole system (dw � 2) [6].

Nonvanishing anomalous dimensions �x
q,

 �x
q � �xq � 2q� dx; (2)

distinguish a critical point from a simple metallic phase in
which �x

q � 0. By the definition (1) and (2), �x
q vanish at

q � 0 and 1. The exponent � defined in [6] is absent in
Eq. (2) because the local density of states is independent of
energy at the spin-orbit MIT. The MF singularity spectra
fx��� are obtained from �xq by Legendre transformation,

 

FIG. 1. Systems studied: (a) A rhombus with the bulk, surface,
and corner regions of sizes l� l, l� h, and w� w sites,
correspondingly; (b) a cylinder with the bulk (L� l) and surface
(L� h) regions.
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 fx��x� � �xq� �xq; �x � d�xq=dq: (3)

fx��� have the meaning of fractal dimensions: the number
of points r 2 x, where j �r�j2 scales as L��, is propor-
tional to Lf

x���. This gives a direct relation between fx���
and the distribution functions of WF amplitudes:

 Px�j j2� � j j�2Lf
x����dx ; � � � lnj j2= lnL: (4)

Since f����� 	 d� � 0, the ensemble average is essential
[10] for defining corner MF.

Suppose that the qth moment j �r�j2q is represented by a
local operator in an underlying critical field theory describ-
ing disorder averages. The scaling dimension of this op-
erator will then equal �q [11]. If the field theory possesses
conformal invariance and if the operator is (Virasoro)
primary, then the relation ��

q �
�
� �s

q between the surface
and corner exponents can be derived [8] from the confor-
mal mapping w � z�=�. This yields

 ��q� 2�
�
�
��sq� 2�; f����q� �

�
�

fs��sq�� 1�: (5)

The validity of these relations provides direct evidence for
conformal invariance at a 2D localization critical point,
and for the primary nature of this operator. We note,
however, that Eqs. (5) are valid only if ��q > 0, because
� is non-negative for normalized WFs [3,4]. It is expected
[10] that for q > q� (where q� is a solution to ��q � 0) the
exponents ��q become independent of q, while ��q � 0
[Eq. (3)]. With the definition (2) this leads to a modified
relation between ��

q and �s
q:

 ��
q �

8>><
>>:

�
�

�s
q; q < q�;

�
�

�s
q� � 2�q� q��; q > q�:

(6)

In [6] it was argued that when the MF in the whole
sample with a smooth boundary is analyzed, the lowest of
the �q exponents for bulk and boundary dominates: �wq �
min��bq; �

s
q�. Points where the curves �bq and �sq intersect

translate into linear segments on the plot of fw��� (neces-
sarily convex), interpolating between fb��� and fs���, see
Fig. 3 in [6].

In a recent Letter, Mirlin et al. pointed out that �b
q obey

the relation �b
q � �b

1�q, which is expected to hold also for
surface MF [12]. In two dimensions this leads to

 fx��x1�q��
�x1�q

2
�fx��xq��

�xq
2
; �x1�q�4��xq; (7)

and implies that �x cannot exceed 4.
To test all these theoretical predictions for the 2D spin-

orbit MIT, we employ the ‘‘SU(2) model’’ defined in [13],
which is a tight-binding model on a 2D square lattice with
on-site disorder and a random SU(2) nearest-neighbor
hopping. We consider four different lattice geometries:
(i) torus, i.e., a square lattice with periodic boundary con-
ditions (PBC) imposed in the x and y directions,
(ii) cylinder [Fig. 1(b)] with PBC imposed in the x direc-

tion and open boundary conditions (OBC) in the y direc-
tion, (iii) square with OBC in the x and y directions, and
(iv) rhombus [Fig. 1(a)] with � � �=4 and �0 � 3�=4 and
OBC imposed in the x and y directions. In all these
geometries the number of lattice sites is L2.

For the scaling analysis the system size L is varied
through L � 24; 30; 36; . . . ; 120. For a fixed on-site disor-
der strengthWc, we examined 6� 104 samples with differ-
ent disorder configurations for each L. We have used the
forced oscillator method [14] to diagonalize the Hamil-
tonian, and extracted one critical WF from each sample
which had the energy eigenvalue closest to the critical
energy Ec � 1 at Wc � 5:952 (in the unit of hopping
strength). For the results presented below, we have set l �
L=6, h � 1 for the cylinders [Fig. 1(b)], and w � 4 for the
corners [Fig. 1(a)]. We have numerically confirmed that the
exponents computed in the bulk regions of rhombi and
cylinders agree with those of tori within statistical error
bars. Also, the MF exponents for the surface region of
rhombi are, within error bars, equal to those computed
for the surface region of cylinders. In the following figures
the bulk (surface) exponents are those computed for tori
(for the surface region of cylinders).

Figure 2 shows the probability distribution functions
(PDFs) of lnj �r�j2 measured for r at corners with angle
� � �=4 (light blue) and � � �=2 (pink), at the boundary
of cylinders (blue), and in the bulk region of cylinders
(black) at the fixed L � 120. Each PDF is normalized in
the region where it is defined. The PDF calculated for tori
is also shown in red, and it agrees quantitatively with the
bulk PDF (black), as expected. Clearly, the PDFs for bulk,
surface, and corner with � � �=2 and � � �=4, are all
different, and, in this order, the peak position is shifted to
the left, in agreement with the expectation that WF ampli-
tudes should be smaller near edges. In the same order, the
distributions become broader with longer (presumably
power-law) tails at j j2L2 � 1. This means that for large
q the moments j �r�j2q can become larger near edges

 

FIG. 2 (color). PDFs of logarithm of WF amplitudes on tori
(red), in the bulk region of cylinders (black), in the surface re-
gion of cylinders (blue), and in the corner region with � � �=2
(pink) and ���=4 (light blue); L � 120. Inset: Semi-
logarithmic plot.
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(corners) than in the bulk, as the higher moments are
dominated by long tails [10].

We numerically obtain �xq and fx��xq� from [see (1) and
(3)]

 hhlnj j2iiq �
j �r�j2q lnj �r�j2

j �r�j2q
���xq lnL; (8)

 lnj �r�j2q � 
fx��xq� � �xqq� dx� lnL: (9)

The inset of Fig. 3(a) shows hhlnj j2iiq as functions of L,
computed for tori (x � b), at the boundary of cylinders
(x � s), and at the corners (� � �=2) of squares. This inset
exhibits distinct scaling behavior for bulk, surface, and
corner regions for the displayed values of q � 1, 3.

Figure 3(a) shows fx��� of the bulk, surface, and corner
(� � �=2) regions. Clearly, in this order, the spectra fx���
are seen to become broader and their maxima �x0 are
shifted to the right (�b0 � 2:173
 0:001, �s0 � 2:417


0:002, ��=2
0 � 2:837
 0:003), in accordance with Fig. 2

and Eq. (4). [Recall that the maximal values of fx��� are

the spatial dimensions dx.] The plot of fw��� for the whole
cylinder [Fig. 3(a), orange] clearly represents the convex
hull of fb��� and fs��� [6,15]. Notice that fw��� deviates
from fb��� already at f��� � 1:5 (for q < 0). This con-
firms the prediction of [6] that the presence of boundaries
drastically affects the MF of the system even in the ther-
modynamic limit and also in a typical sample [where
f��� � 0 [10]].

The data points of the bulk spectrum fb��� [red dots in
Fig. 3(a)] lie on top of the red curve representing data
points [16] for fb��b1�q� in Eq. (7). This confirms Eq. (7)
for the bulk which is the consequence of the symmetry
relation [12]. Incidentally, the value of the typical bulk
exponent �b0 agrees with earlier calculations [17,18] but
not with [19]. Furthermore, our �b0 satisfies ���b0 � 2� �
1=�c [3], where �c � 1:843 is the quasi-1D localization
length at the MIT, normalized by the wire width, as ob-
tained in [13]. The surface spectrum fs��� (blue) is also
seen to satisfy the relation (7) for 1 & �s & 3, but there are
discrepancies between the blue dots and the curve
fs��s1�q� when �sq > 3 (q <�0:7) and �sq < 1 (q > 2).
Moreover, it appears that �sq can exceed 4, in contrast to
�bq < 4. This may question the validity of the symmetry
relation of [12] for boundaries, but we feel that computa-
tions on even larger system sizes and numbers of samples
are necessary for drawing a definite conclusion.

Figure 3(b) shows the corner spectra f���� at � � 3�=4
(green), �=2 (pink), and �=4 (light blue). As � decreases,
the peak position moves to the right (�3�=4

0 � 2:558


0:003, ��=2
0 �2:837
0:003, and ��=4

0 � 3:689
 0:006)
and the spectra become broader, indicating that at smaller
� the typical value of a WF amplitude is smaller but its
distribution is broader. The numerical data (dots) are com-
pared with the curves predicted from conformal invariance,
Eq. (5), using fs��s� of Fig. 3(a) within the range 1 &

�s & 3, where jqj is sufficiently small to ensure good
numerical accuracy. The agreement between the numerical
data and the predicted curves is excellent, confirming the
presence of conformal symmetry.

The inset of Fig. 3(b) shows �xq where the curves repre-
sent ��q computed with �sq as input in Eq. (5). Note that
�x � 2 at q � 1=2 as a consequence of Eq. (7). We see that
the numerical data for ��q deviate from the predicted
curves, Eq. (5), when ��q & 1, in order to satisfy the con-
straint ��q > 0. We expect that in the limit L! 1, ��q be
given by Eq. (5) for q < q� and by ��q � 0 for q > q�.

We note that the numerical results for ��q exceed 4 when
q & �0:1 for � � �=4, and q & �0:7 for � � �=2
[Fig. 3(b) and inset]. Even the maximum ��0 of f����
will exceed 4 for sufficiently small angles �. On one
hand, the maximum corresponds to q � 0 where the nu-
merics are most accurate. On the other hand, the maximal
value f���� � d� � 0 has a direct physical meaning as the
dimension of the WF support, and must therefore appear on
the f���� curve. Thus, our data strongly indicate that the
symmetry relation of [12] is violated for corners.

 

FIG. 3 (color). (a) Bulk (red), surface (blue), corner � � �=2
(pink), and whole cylinder (orange) f��� spectra, with error bars
shown at integer values of q. Red, blue, and pink curves
represent fx�4� �� � �� 2. Inset: Scaling plot of Eq. (8) at
q � 1 (filled circles) and q � 3 (open circles). (b) Corner f���
spectra at � � �=4 (light blue), �=2 (pink), and 3�=4 (green),
with error bars shown at integer q (and at q � �0:5 for � �
�=4). Curves represent the conformal relation (5). Inset: Nu-
merical results for �xq compared with Eqs. (5) (colored curves).
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The anomalous dimensions �x
q are computed numeri-

cally from j �r�j2q=�j �r�j2�q � L��x
q , which follows from

Eqs. (1) and (2). Figure 4(a) shows the bulk anomalous
dimension �b

q (red) and its mirror image across the q �
1=2 line �b

1�q (gray), both rescaled by q�1� q�. Note that
this rescaling magnifies small numerical errors around q �
0 and q � 1. Nevertheless, the numerical data satisfy the
relation �b

q � �b
1�q of [12] for �1< q< 2 where statis-

tical errors are small. It is also clear from Fig. 4(a) that
�b
q=
q�1� q�� varies with q, which means that the bulk

spectrum fb��� is not exactly parabolic.
Figure 4(b) compares �x

q for bulk, surface, and corners
with � � �=4, �=2, and 3�=4. The solid curves represent
the theoretical prediction (6) from the conformal mapping,
where �s

q is taken from Fig. 4(b). For sufficiently small
values of jqj the numerical results of ��

q are in good
quantitative agreement with the prediction (6). It is pre-
cisely for small jqj that the numerical data are most accu-
rate [20]. This provides direct evidence for the presence of
conformal symmetry at the 2D spin-orbit MIT.

The inset of Fig. 4(b) shows the exponents �xq for bulk,

surface, and corners. We see that ��=4
q (light blue) is

constant for q > q�=4 � 1 reflecting the exchange between

top and bottom lines in Eq. (6) which happens at ��=4
q � 0.

It appears that ��=4
q becomes smaller than both �sq and �bq

for q * 2:5, which is when the corner exponent ��=4
q con-

trols the MF of the whole sample with a �=4 corner, as
shown in black. In a sample without corners such as a

cylinder, the surface exponent �sq controls the MF of the
entire sample for sufficiently large q. This confirms and
generalizes the predictions made in [6].

In summary, we studied bulk, surface, and corner multi-
fractality at the MIT in the 2D spin-orbit symmetry class.
We provided direct numerical evidence for the presence of
conformal symmetry at this critical point, and confirmed
predictions of [6] that boundaries affect MF of the whole
system even in the thermodynamic limit. We also tested the
validity of the symmetry relation of [12] for the bulk,
surface, and corners. It appears that the relation holds in
the bulk, but is violated at corners.
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Note added.—Recent numerical work on the bulk MF in
the 2D symplectic class [21] agrees with our results for the
bulk.
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FIG. 4 (color). (a) The numerical data for the bulk exponents
�b
q (red) are compared with their mirror image �b

1�q (gray). The
green line represents �b0 � 2. (b) The exponents �q=
q�1� q��
for the bulk (red), the surface (blue), and corners with � � �=4
(light blue), �=2 (pink), and 3�=4 (green). The curves represent
the theoretical prediction, Eq. (6). Inset: Bulk (red), surface
(blue), and corner (� � �=4, light blue) exponents �xq, and �wq
for a whole rhombus with � � �=4 (black).
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