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Abstract

We investigate boundary multifractality of critical wave functions at the Anderson metal–insulator transition in two-dimensional

disordered non-interacting electron systems with spin–orbit scattering. We show numerically that multifractal exponents at a corner with

an opening angle y ¼ 3p=2 are directly related to those near a straight boundary in the way dictated by conformal symmetry. This result

extends our previous numerical results on corner multifractality obtained for yop to y4p, and gives further supporting evidence for

conformal invariance at criticality. We also propose a refinement of the validity of the symmetry relation of A.D. Mirlin et al. [Phys. Rev.

Lett. 97 (2006) 046803] for corners.
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Anderson metal–insulator transitions are continuous
phase transitions driven by disorder. Examples of locali-
zation–delocalization (Anderson) transitions occurring in
two dimensions (2D) include non-interacting electronic
systems with spin–orbit scattering (‘symplectic symmetry
class’), with sublattice symmetry, or in strong magnetic
fields (quantum Hall effect).

Recently, we have reported numerical evidence for the
presence of conformal invariance at the 2D Anderson
transition in the symplectic symmetry class [1]. To that end,
we have considered multifractal properties of critical wave
functions near boundaries of disordered samples of finite
size, and verified numerically that the multifractal expo-
nents of critical wave functions at corners with opening
angle y (corner multifractality) are related, through simple
relations derived from conformal invariance, to the
exponents computed near straight edges (surface multi-
fractality). In Ref. [1] we have discussed corner multi-
e front matter r 2007 Elsevier B.V. All rights reserved.
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fractality at wedges with angles yop only, both acute
(y ¼ p=4) and obtuse (y ¼ 3p=4). In this paper we extend
this analysis to a corner with y ¼ 3p=2 to show that the
same equation relating surface and corner multifractality
holds for the corner with a reflex angle (y4p).
Following Refs. [1,2], we define bulk, surface, and corner

multifractality from the scaling of moments of wave
functions cðrÞ in bulk (b), surface (s), and corner (y)
regions,

Ldx jcðrÞj2q�L�t
x
q ðx ¼ y; s; bÞ, (1)

where dx is the spatial dimension of each region (db ¼ 2,
ds ¼ 1, and dy ¼ 0). The overbar represents the ensemble
(disorder) average and the simultaneous spatial average
over a region x surrounding the point r. The exponents tbq ,
tsq, and tyq are the bulk, surface, and corner multi-
fractal exponents, respectively. From the multifractal
exponents we extract non-vanishing anomalous dimen-
sions Dx

q,

Dx
q ¼ txq � 2qþ dx. (2)
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Fig. 1. (Color online) Multifractal spectra f ðaÞ for corners with y ¼ 3p=2
(circles) and y ¼ p=2 (squares), and surface (triangles) regions. Error bars

are plotted at integer values of q for the corner with y ¼ 3p=2. The solid

and short-dashed curves represent the theoretical prediction from Eq. (4),

where f 3p=2
ða3p=2q Þ and f s

ðasqÞ are used as input, respectively. The dashed

curve is calculated from Eq. (5) with f 3p=2
ða3p=2q Þ used as input. Inset:

L-form geometry with 3L2=4 sites. The shaded part is the corner region

with y ¼ 3p=2 of the size 3w2=4.
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The multifractal singularity spectra f x
ðaÞ are obtained from

txq by Legendre transformation

f x
ðaxÞ ¼ axq� txq; ax ¼

dtxq
dq

. (3)

As explained in Ref. [1], under the assumption that the qth
moment jcðrÞj2q is represented by a primary operator in an
underlying conformal field theory [3], one can derive, using
the conformal mapping w ¼ zy=p, the relation between the
surface and corner multifractal spectra f x

ðaxqÞ,

ayq � 2 ¼
p
y
ðasq � 2Þ; f y

ðayqÞ ¼
p
y
½f s
ðasqÞ � 1�. (4)

The validity of these relations provides direct evidence for
conformal invariance at a 2D Anderson transition and for
the primary nature of the operator.

In Ref. [1] we have shown that the probability
distribution of ln jcðrÞj2 becomes broader, as the opening
angle y is reduced. This implies that the distribution is
narrower at a corner with larger y. We may thus expect
that multifractal exponents can be more accurately
calculated for corners with reflex angles than for corners
with angles yop. We can then estimate the surface f s

ðasqÞ
by taking the numerical data for ayq and f y

ðayqÞ obtained for
y4p as input into Eq. (4). Moreover, we can relate
multifractal spectra of corners with different angles y and
y0 (yoy0), yielding

ayq � 2 ¼
y0

y
ðay

0

q � 2Þ; f y
ðayqÞ ¼

y0

y
f y0
ðay

0

q Þ. (5)

As we pointed out in Ref. [1], Eqs. (4) and (5) are valid only
if all occurring axqX0, because axq is non-negative for
normalized wave functions. Thus, when the prefactor y0=y
is larger than one (and hence 0payqoay

0

q ), the first of Eq. (5)
cannot be used for q4qy, where qy is a solution to ayq ¼ 0 in
Eq. (5). (We do not know if qy is finite for yXp). Taking
this physical constraint into account, we find the following
relation between anomalous dimensions for corners
(yoy0),

Dy
q ¼

y0

y
Dy0

q ; qpqy;

y0

y
Dy0

qy
� 2ðq� qyÞ; q4qy:

8>><
>>:

(6)

If we set y ¼ p in Eq. (6), we obtain a relation between
anomalous dimensions at a surface (y ¼ p) and a corner
with a reflex angle (y04p). In Ref. [1] we also discussed the
symmetry relation of Ref. [4], Dx

q ¼ Dx
1�q, and its applica-

tion to corners x ¼ y. Here we propose, as a refinement of
that discussion, that this symmetry relation (i) is valid for
corners of any angle y including y ¼ p (straight bound-
aries), but only in the range of q satisfying 1� qypqpqy,
corresponding precisely [1,4] to the range 0payqp4, and (ii)
makes no statements about Dy

q for values of q outside of
this range. [The dependence on q of Dy

q is linear for q4qy
(corresponding to the termination of the multifractal
spectrum [5]), whilst it may, in general, continue to be
non-linear for qo1� qy, even [1,4] when ayq44.]
In this work, we numerically verify these relations by

computing corner multifractal spectra at y ¼ 3p=2 for the
L-shape samples shown in the inset of Fig. 1. We take a
tight-binding model with both random on-site potential
and random SU(2) hopping [6], and numerically obtain,
with the forced oscillator method [7], a wave function c
having energy eigenvalue closest to a critical point Ec ¼ 1:0
(in units of the mean hopping) for each random realization
characterized by the on-site disorder strength W c ¼ 5:952.
The system size L is varied through L ¼ 24; 30; . . . ; 120 and
the number of disordered samples is 6� 104 for each L. We
set w ¼ 2 of the corner region shown in Fig. 1. Multifractal
spectra are computed in the same way as in Ref. [1].
In Fig. 1, we show multifractal spectra f ðaÞ of corners

with y ¼ 3p=2, together with those of corners with y ¼ p=2,
and of the surface region [1]. The peak position ax0 of
f 3p=2
ða3p=2q Þ is a3p=20 ¼ 2:265� 0:003, which is smaller than

ap=20 ¼ 2:837� 0:003. Also, the width of f 3p=2
ðaÞ is smaller

than that of f s
ðasqÞ. This is consistent with Eq. (4) at

y ¼ 3p=2. Fig. 1 clearly shows that f 3p=2
ðaÞ computed

directly for the corner with y ¼ 3p=2 agrees well with the
short-dashed curve obtained from Eq. (4) while using f s

ðaÞ
as input, which verifies Eq. (4) derived from conformal
invariance. We have also calculated the surface f s

ðasqÞ and
corner f p=2

ðap=2q Þ from Eqs. (4) and (5), respectively,
using f 3p=2

ða3p=2q Þ as input into these equations. This allows
us to estimate f s

ðasqÞ near a
s � 0, providing an estimate for

qs ¼ df s
ðas ¼ 0Þ=das. The theoretical predictions (solid and

dashed curves) are in good agreement with the numerical
data (triangles and squares) for f s

ðasqÞ and f p=2
ðap=2q Þ,

respectively.
Fig. 2 shows the anomalous dimensions Dx

q for
corners with y ¼ 3p=2 and y ¼ p=2, and the surface
region, which are numerically calculated from the scaling
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Fig. 2. (Color online) The exponents Dx
q=½qð1� qÞ� for corner with y ¼

3p=2 (circles) and y ¼ p=2 (squares), and surface (triangles) regions. Solid

and dashed curves represent the conformal relation (6).
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jcðrÞj2q=ðjcðrÞj2Þq�L�D
x
q . The solid and dashed curves

represent the theoretical prediction, Eq. (6), from the
conformal mapping using D3p=2

q as inputs. The data points
for Ds

q (triangles) agree with the solid curve for jqjt1:5,
while those for Dp=2

q (squares) are close to the dashed curve
only near q � 0. The data points for D3p=2

q satisfy, within
error bars, the symmetry relation [4] D3p=2

q ¼ D3p=2
1�q

in the vicinity of q ¼ 1
2
, indicating good numerical accuracy.

This opens the possibility that one can use corner multi-
fractality for y4p to obtain, with the help of Eqs. (4) and
(6), more accurate estimates for multifractal properties at a
straight surface and corners with yop.

We briefly comment on multifractality of a whole sample
with boundaries. We have found in Refs. [1,2] that corner
multifractality may dominate multifractality of a whole
system, even in the thermodynamic limit, for large values
of jqj if tyqotbq ; t

s
q. Here we point out that this cannot

happen with corners of reflex angles (y4p). The proof goes
as follows. We first note that, from Eqs. (2) and (6), the
difference of corner and surface multifractal exponents is
given by tyq � tsq ¼ 1þ Ds

qðp=y� 1Þ as long as asq40 (note
that ayq4asq for y4p). Thus, when poyo2p, the inequality
tyq4tsq holds if Ds
qp2. Secondly, since txq is a convex

function of q with the constraints tx0 ¼ �dx and tx1 ¼ 2� dx

(recalling [1] m ¼ 0, and thus Dx
1 ¼ 0), we find Dx

qp0 for
jq� 1=2jX1=2 and 0oDx

qo2 for 0oqo1. We thus
conclude that tyq4tsq when asq40. Finally, when tyq � tsq is
positive for asq40 the difference remains positive even if
qso1 and in the regime qXqs where a

s
qs
¼ 0, because tsq is

then constant for qXqs (and dtyq=dq ¼ ayqXasq). Hence,
contributions from corner multifractality at y4p cannot be
larger than contributions from surface multifractality. The
numerical results shown in Fig. 1 are consistent with the
above general argument.
In summary, we have investigated corner multifractality

for the reflex angle y ¼ 3p=2 and confirmed the validity of
the conformal symmetry relations. This result provides
stronger evidence for the presence of conformal symmetry
at the 2D Anderson metal–insulator transition with spin-
orbit scattering.
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