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Abstract

Disordered non-interacting electronic sytems can undergo transitions between delo-

calized and localized single particle wavefunctions as their energy is varied. In this

thesis, mutifractal behavior of wavefunctions at such transitions near sample bound-

aries and corners and its relation to conformal invariance in two dimensions are stud-

ied. The concepts of boundary and corner multifractality are formulated and the

influence of boundaries on various observables is analyzed from a general perspec-

tive. These ideas are then applied to a number of localization-delocalization (LD)

transitions, each occurring in a single-particle system with a distinct dimensionality

and symmetry. These analyses reveal a number of expected as well as novel features

some of which are specific to the systems studied while others are common to all LD

transitions. Study of boundary multifractality has a direct bearing on the nature of

the unknown critical theories for LD transitions. In addition, the behavior of en-

tanglement entropy near LD transitions has been analyzed and its scaling behavior

illustrated in a few model systems.
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Chapter 1

Introduction

Five decades ago, Anderson found [1] that a single quantum particle moving in a

random potential can get localized in space. In particular, at a given energy and

disorder strength, all wave functions of the particle are either localized or delocalized.

This implies that there can be transitions between localized and delocalized states

as the energy of the particle is varied. Such transitions are commonly referred to as

Anderson transitions or more generally as localization-delocalization (LD) transitions

(for a recent review, see [2]). Significant progress in understanding the nature of

these transitions was achieved through the development of scaling theory [3] and field

theoretic descriptions [4] of localization. These ideas emphasized the analogy between

the LD transition and conventional second-order phase transitions.

One of the central results arising out of the scaling and field theory based for-

mulations was that an arbitrarily weak disorder is sufficient to localize a quantum

particle in two and lower dimensions. This can be formalized using perturbative and

renormalization group (RG) calculations. A number of exceptions to this result have

been found, the most spectacular and experimentally important one being the inte-

ger quantum Hall (IQH) plateau transition [5]. Other examples include systems with

time reversal symmetry but broken spin rotation symmetry (the so called symplectic-

class), particle-hole symmetric systems (superconducting classes) and systems with

sublattice symmetry (chiral classes). The natural question to ask is whether the LD

transitions occurring in these two dimensional (2D) systems can be described using a

field theoretic formulation. In fact, in the light of exact conformal field theory tech-

niques which have been developed for conventional second-order phase transitions in

2D [6], we might very well ask for similar non-perturbative formulations of the 2D LD

1



2

critical points. This has been achieved for a few LD transitions but the important

IQH and symplectic-class critical point theories have remained elusive till today.

Despite the aforementioned issue, our understanding of LD transitions has been

greatly refined due to a number of important developments. One of them is the

symmetry classification proposed by Altland and Zirnbauer [7, 8] which puts each

disordered system with a distinct symmetry in correspondence with one of the ten

families of symmetric spaces of Cartan. This idea was central to the discovery of de-

localized phases in some of the previously mentioned 2D systems and has also given

us a broader perspective of all possible disordered single particle systems that can

occur. We summarize this classification in Table 1.1 at the end of this chapter. An-

other important development has been the description of critical wave functions at

the LD transition using the language of multifractality. The similarities and distinc-

tions between multifractal and ordinary critical behavior have given us keen insights

into the nature of the field theories which can describe LD transitions.

A key aspect of ordinary critical behavior is that the scaling behavior of observ-

ables in the critical theory which are measured near the boundary can be significantly

different from those of bulk observables. In particular, the boundary (‘surface’) scal-

ing dimensions of observables can be (and typically are) distinct from their bulk

scaling dimensions. From this perspective, a very natural question to ask is how does

one understand multifractality at the LD transitions in the presence of a boundary.

Answering this question is the main motivation for this thesis work. This investiga-

tion has a number of implications. One of them is that the 2D LD critical points are

expected to be conformally invariant and in the case of an unknown field theory for

the bulk, boundaries can constrain and restrict this unknown bulk theory. This idea

has already been demonstrated in the context of ordinary 2D critical behavior [9].

Moreover, systems with boundary can be used to unambiguously test the hypothesis
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of conformal invariance itself which is often assumed to exist at the unknown 2D

critical points describing the LD transitions.

The investigation of boundary multifractality at LD transitions reveals a number

of expected as well as novel features which are described in this thesis. Chapter 2 deals

with the concept of boundary multifractality in a generic situation and sets forth the

essential ideas. In particular, we find the surprising result that boundary contribution

can dominate over the bulk contribution to multifractality even in the thermodynamic

limit, for certain observables. In the same chapter, we also recapitulate some essential

concepts on conformal invariance in systems with boundary and derive consequences

of this conformal invariance for multifractality. While all this is done with LD critical

points in mind, the applicability of the results is much more general and they can

be used to study boundary critical behavior in any system where multifractal scaling

and conformal invariance are expected to be present, such as in random 2D magnets.

From Chapter 3 onwards, we investigate boundary multifractality at various spe-

cific LD critical points (The 2D transitions below are among the ones listed in Ta-

ble 1.1). In Chapter 3, we investigate the 2D spin quantum Hall transition and

calculate multifractal exponents using a supersymmetric network model. In Chap-

ter 4, we study a one dimensional model of random power-law banded matrices which

exhibits critical behavior. We discover a one-dimensional family of boundary critical

theories and analyze the corresponding multifractal behavior. In Chapter 5 and 6,

we apply some of the general principles of boundary multifractal analysis to under-

stand numerical simulations (done by collaborators) and constrain possible candidate

theories for the 2D symplectic-class transition and the IQH plateau transition, respec-

tively. In Chapter 7, we describe the relation between the language of multifractal

analysis and entanglement entropy in disordered non-interacting electron systems. In

Chapter 8, we provide a brief summary and possible future directions. Some of the
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Usual Des-
ignation

TRS SRS CS SC Well known 2D transitions

A - ± - - Integer quantum Hall plateau transition
AI + + - -
AII + - - - Symplectic-class transition
AIII - ± + - Line of fixed points
BDI + + + - Line of fixed points
CII + - + - Line of fixed points
C - + - + Spin quantum Hall transition
CI + + - +
BD - - - + Thermal quantum Hall transition
DIII + - - +

Table 1.1: Symmetry classes of disordered electronic systems from [8]. The + and −
symbols denote the presence or absence respectively, of a particular symmetry. TRS
- time reversal symmetry, SRS - spin rotation symmetry, CS - chiral symmetry, SC -
superconductor. The line of fixed points occurs in the chiral classes because the vector
potential disorder in the chiral classes is an exactly marginal perturbation [10].

technical details regarding the spin quantum Hall transition have been relegated to

the appendices: Appendix A gives the relevant representation theory of the sl(2|1)

superalgebra. Appendix B discusses the supersymmetry at the boundary of the spin

quantum Hall network model.



Chapter 2

Multifractality and Conformal Invariance - Generalities

2.1 Multifractal scaling

Multifractal scaling refers to the existence of an infinite set of critical exponents char-

acterizing the scaling behavior of moments of some distribution. This has been ob-

served in a wide variety of complex systems such as in turbulence, chaotic dynamical

systems and diffusion-limited aggregation. In the context of LD transitions, multi-

fractal exponents characterize the scaling of moments of the wave function intensity.

The exponents reflect the strong spatial fluctuations of the critical wave functions.

The wave function moments conventionally appear in the form of the so-called

averaged generalized inverse participation ratios (IPR) Pq (the overbar below denotes

disorder average):

Pq =

∫

ddr |ψ(r)|2q (2.1)

Here ψ(r) denotes the wave function amplitude and the integration is typically carried

out over the whole sample volume of dimension d.

Since we are interested in studying the scaling of wave functions in other geome-

tries, we define a more general version of the above quantity:

Pxq =

∫

Mx

dDxrx |ψ(rx)|2q. (2.2)

Here, Dx is the dimension of the region Mx over which the wave function intensity

is integrated over. In particular, we will be interested in the cases of bulk (x = b),

boundary or surface (x = s) and corner (x = c) where Dx takes on the values d,

5
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d − 1 and d − 2, respectively. Boundaries and corners are defined in the same sense

as in usual critical phenomena. For example, boundaries refer to region of finite

width (in terms of a lattice model) along the boundary where the scaling behavior

of observables is distinctly different from those observed deep in the bulk, far away

from any boundary. Corners are also defined in a similar way.

In a critical system, Pxq exhibits multifractal scaling:

Pxq ∝ LDx|ψ(rx)|2q ∝ L−τ
x
q , τxq = dq + ∆x

q + qµx −Dx. (2.3)

Here L is the linear system size and τxq is called the multifractal spectrum and ∆x
q

is often referred to as ‘anomalous’ multifractal exponent or dimension. Multifractal

scaling is synonymous with a non-linear dependence of ∆x
q on q. Depending on the re-

gion of interestMx, the corresponding multifractal dimensions are denoted by ∆b
q,∆

s
q

and ∆c
q referring to bulk, boundary (surface) and corner dimensions respectively.

Note that ∆x
0 is always zero, by definition. Further ∆b

1 = 0 due to the fact

that wave function intensities are normalized to unity with respect to the whole

system (implying P bq=1 = 1 and µb = 0). There is no such general constraint for ∆s
1

and ∆c
1. However, we adopt the convention of setting them equal to zero and the

corresponding contribution to τx1 is reflected in µs and µc respectively. With this

choice, a non-vanishing exponent µx characterizes a non-trivial scaling behavior of

the local wave function intensity at the sample location rx,

Ld |ψ(rx)|2 ∝ 1/Lµx (2.4)

which is known to occur in certain non-conventional Anderson localization symmetry

classes [8, 7]. We will relate ∆x
q and µx to the scaling dimensions of field theory
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operators in Sec. 2.3.

2.2 Singularity spectrum - boundary and corner

Another way to characterize multifractal behavior is through the singularity spectrum

f(α). Similar to the previous section, here we use a general notation which is valid

for bulk, boundary and corner points in the sample. Formally fx(αx) is the Legendre

transform of τxq :

fx(αx) = αxq − τxq , αx =
dτxq
dq

. (2.5)

More physically, fx(αx) is the fractal dimension of all points rx in the sample where

the wave function intensity has the scaling behavior |ψ(rx)|2 ∼ L−α. This is evident

by looking at the distribution function for the wave function intensity which has the

scaling behavior,

P (|ψ(rx)|2) ∼ |ψ(rx)|−2Lf
x(αx)−dx, αx = − ln |ψ(rx)|2/ lnL. (2.6)

Note that αx cannot be negative since the wave function intensity has to be nor-

malizable. fx(αx) cannot be negative for a single sample, but the disorder averaged

fx(αx) can be negative due to contributions from rare realizations of disorder which

will not occur in a typical sample (for a discussion of this point, see Ref. [11]).

Above we chose to define the singularity spectrum fx(αx) separately for the bulk,

boundary and corner cases. To illustrate another important point (see also Ref. [12]),

for the sake of simplicity let us consider a sample with just bulk and boundary regions

without any corners. One can now ask the following question: Imagine that one

performs a multifractal analysis for the whole sample, without separating it into bulk
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and boundary regions. Would the boundary exponents then play any role? A naive

answer is no: since the weight of boundary points is down by a factor 1/L, one could

expect that only the bulk exponents would matter. This is however, not true. To

illustrate this point, we take an example where the whole multifractal spectrum can be

studied analytically. Consider a 2D weakly localized metallic system (dimensionless

conductance g ≫ 1), which shows weak multifractality [13,14] on length scales below

the localization length ξ ∼ e(πg)
β
, where β = 1 (2) for systems with preserved

(broken) time-reversal symmetry. (With minor modifications, the formulas below

describe also the Anderson transition in 2 + ǫ dimensions).

The bulk multifractal spectrum of this system was obtained via the perturbative

renormalization group treatment of the underlying field theory (σ-model) [15] and

also within the instanton approach [13,14]. The result reads

τbq = 2q + γq(1− q)− 2; γ = (βπg)−1 ≪ 1. (2.7)

This can be readily generalized to the case of a semi-infinite sample with reflecting

boundary giving,

τsq = 2q + 2γq(1− q)− 1. (2.8)

Each of the three terms in the above equations correspond to the non-zero terms

contributing to τxq in (2.3) with µx = 0. The factor of 2 in front of the second term

(anomalous multifractal exponent) can be traced back to using the half-space Neu-

mann Green’s function instead of the full-plane version (for e.g., see [16]). Performing

the Legendre transformation, we find the corresponding singularity spectra,

f b(αb) = 2− (αb − 2− γ)2/4γ, (2.9)

fs(αs) = 1− (αs − 2− 2γ)2/8γ. (2.10)
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Figure 2.1: Boundary and bulk multifractal and singularity spectra for a 2D metal
with γ = 0.01.

These results are illustrated in Fig. 2.1 and understood in the following way. The

scaling behavior of the wave-function moments integrated over the whole sample can

be analyzed using a scaling form which interpolates between the bulk and boundary

(ρ denotes the distance perpendicular to the boundary):

∫

whole sample

ddr|ψ(r)|2q ∼ Ld−1
∫ L

1
dρ

(

L

ρ

)−τs
q−d+1

ρ−τ
b
q−d, (2.11)

∼















L−τ
s
q , τsq < τbq ,

L−τ
b
q , τbq < τsq .

(2.12)

We see that the lowest of the τq exponents ‘wins’ since the corresponding term will

dominate in the limit of large system size L. It is easy to see that the boundary effects
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become dominant outside the range q− < q < q+, where q± ≃ ±γ−1/2 are the roots

of the equation τbq = τsq . The lower panel of Fig. 2.1 shows how this is translated

into the f(α) for the whole sample. The total singularity spectrum f(α) is given by

the bulk function f b(αb) only for αb+ < α < αb−, where αb± − 2 ≃ ∓2γ1/2. Outside

this range boundary effects are important. Specifically, f(α) is equal to the boundary

spectrum fs(αs) for α < αs+ and α > αs−, where αs± − 2 ≃ ∓4γ1/2, while in the

intermediate intervals αs+ < α < αb+ and αb− < α < αs− its dependence on α becomes

linear (shown by dashed lines). The latter behavior is governed by intermediate

(between ‘bulk’ and ‘boundary’) points with a distance from the boundary r ∼ Lν ,

0 < ν < 1; The wave function intensity at these points has a multifractal spectrum

which interpolates between the bulk and the boundary spectra: τνq = τsq +ν(τbq − τsq ).

the corresponding contribution to the singularity spectrum of the whole sample is

easily found to be f(α) = νf b(αb±) + (1− ν)fs(αs±) where ν = (α− αs±)(αb± − αs±).

Note that in this particular case the boundary effects modify f(α) in the whole

range below f(α) ≃ 1. Therefore, we arrive at the important result that the bound-

ary exponents can affect the multifractal spectrum of the sample not only for rare

realizations of disorder (governing the negative part of f(α)) but also in a typical

sample. This is in contrast to usual second-order phase transitions where boundary

contribution is always less important than the bulk contribution to all observables.

2.3 Multifractality and field theory

The multifractal exponents describing the wave function moments can be related to

the scaling dimensions of certain operators describing the local density of states and

its moments in the field-theoretic description. One can understand this at the per-

turbative level using the non-linear sigma model description of disordered electronic
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systems (for a review, see [17]).

Let us explain the connection here since this will be the basis for interpreting the

numerical results discussed in later chapters. The local density of states (LDOS) at

a particular energy E and at a specific point rx in the sample can be written as:

ρE(rx) =
∑

n

|ψn(rx)|2δ(E − En), (2.13)

where n labels the energy eigenstates ψn(rx) at energy En. The global density of

states (DOS) ρE is the integral of the LDOS over the whole sample. If we assume

that all wave functions at a given E show statistically identical multifractal scaling

behavior, we can then write,

|ψE(rx)|2 ∼
∑

n |ψn(rx)|2δ(E −En)
∑

n δ(E − En)
=
ρE(rx)

ρE
. (2.14)

Now disorder average of powers of the LDOS ρE(rx) are represented by the expec-

tation value of operators in the correponding field theory. We denote this symbolically

as,

[

LdρE(rx)
]q ∼

〈

Oq(rx)
〉

, (2.15)

where the angular brackets denote the expectation value in the corresponding field

theory. Here Oq(rx) is the operator which corresponds to moments of
[

LdρE(rx)
]

.

This operator can be found explicitly in the sigma model description but we will not

need that here.

In field theory, operators can be located in the bulk, on the boundary or at the

corner of the sample (i.e. the point rx can denote rb, rs or rc respectively). At

criticality, the expectation value of the corresponding operators exhibits a power-law
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scaling:

〈

Oq(rx)
〉

∼ 1

LXx
q
. (2.16)

Here Xxq is called the scaling dimension of the field theory operator Oq(rx). (Unfor-

tunately, due to convention, we use very similar notations X and x for the scaling

dimension and in the location rx of the operator respectively. The context should

make it clear as to which one is being referred to.) In general, Xxq is distinct for the

x = b, s and c cases as we will indeed see in later chapters.

Having introduced the scaling dimensions Xxq , we can then relate it to the anoma-

lous multifractal dimensions, ∆x
q . There are two cases to consider: one when the

global DOS, ρE is not critical at the LD transition and the other case when it is

critical.

For the simple case when ρE is not critical, from Eqs. (2.3), (2.14), (2.15) and

(2.16), we see that the scaling dimension Xxq is the same as the anomalous multifractal

dimension ∆x
q and µx = 0 for all the cases x = b, s and c. The different multifrac-

tal exponents at the bulk, boundary and corners are just the bulk, boundary and

corner scaling dimension of the corresponding operators in the field theory. This is

summarized by the following relation for the case of non-critical DOS,

[

Ld|ψEc
(rx)|2

]q ∼
〈

Oq(rx)
〉

∼ 1

L∆x
q
, (2.17)

where rx is a point in the bulk, boundary or corner of the sample (i.e. x = b, s or c).

For LD transitions where the density of states has a non-trivial critical scaling

(this is the case with the SQH transition discussed later), the above identification

between ∆x
q and Xxq has to be modified. In this case, the DOS ρE has a scaling
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dimension Xρ. Irrespective of the critical DOS, the wave function intensity is still

normalized to unity over the whole sample. This implies that for points rb which lie

deep in the bulk of the sample, the operator corresponding to Ld|ψEc
(rb)|2 does not

scale with the system size i.e. its dimension ∆b
1 = 0. Using this in Eqs. (2.3), (2.14),

(2.15) and (2.16), we see that,

Xb1 = Xρ and µb = 0. (2.18)

Using the same equations and adopting the convention that ∆x
1 ≡ 0 for all x = b, s

and c, we arrive at the identifications,

∆x
q = Xxq − qXx1 and µx = Xx1 −Xρ. (2.19)

Eqs. (2.18) and (2.19) are general relations that are valid for both critical and non-

critical DOS cases and for all points (x = b, s or c) in the sample. µx can be inter-

preted as an exponent expressing the supression of wave-function intensity near the

boundaries or corners of a sample with critical DOS.

2.4 Conformal invariance at LD transitions

In the previous section, we outlined the general interpretation of multifractal scaling

in terms of field theory operators. Here we specialize to the case of LD transitions

occurring in two dimensions (2D) where we can say more.

The field theories describing phase transitions are in general, conformally invariant

at the critical point. Conformal invariance can be thought of as local scale invariance.

Conformal invariance is especially powerful in 2D where the corresponding symmetry

becomes infinite dimensional and provides strong constraints on the various observ-
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ables in the field theory (for reviews, see [18,19]). In particular, the ability to predict

the value of observables in any sample geometry given the value of the observables in

a single sample geometry is one of the important features of conformally invariant 2D

systems. We will use this idea extensively in our analyses of LD transitions in 2D.

The disorder averaged field theories describing LD transitions are generally ex-

pected to be conformally invariant. Here we explain consequences of this conformal

invariance for multifractal scaling. These consequences can be verified against numer-

ical simulations (as we do in later chapters) which tests the hypothesis of conformal

invariance at LD transitions. Even if we do not know the exact conformal field theory

(CFT) describing an LD transition, numerical simulation of systems with boundaries

can be used to glean important information about the unknown CFT. This is the

motivation for some of the numerical analyses carried out for the symplectic-class

and the IQH plateau transitions in Chapters 5 and 6, respectively.

Restricting ourselves to 2D, any conformal transformation can be represented by

an analytic transformation w(z) which maps a particular sample geometry parametrized

by the complex co-ordinate z into a sample with different geometry parmetrized by

w. (The complex conjugate z̄ is mapped to w̄(z̄).) Specific examples of interest to us

are the transformations,

1. w(z) =
L

2π
ln z, which maps the full complex plane into an infinite cylinder of

circumference L,

2. w(z) =
L

π
ln z, which maps the upper half plane into an infinite strip of width

L,

3. w(z) = zθ/π, which maps the upper half plane into a wedge with angle θ.

The last two transformations are shown in Fig. 2.2.
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Figure 2.2: Conformal transformations mapping the upper half plane to a strip and
to a wedge.

2D CFTs have a special class of operators called Virasoro primary fields that

transform in a simple way under the above tranformations:

φ(w) =

∣

∣

∣

∣

dw

dz

∣

∣

∣

∣

Xφ

φ(z). (2.20)

Xφ is the scaling dimension of the Virasoro primary field φ. The primary field can

be located either in the bulk or on the boundary of the 2D sample.

The two point correlation function of bulk fields in the full complex plane or the

boundary fields on the upper half plane have a simple form in a conformally invariant

field theory:

〈φ(zx1 )φ(zx2 )〉 =
1

∣

∣zx1 − zx2
∣

∣

2Xx
φ

. (2.21)

Here we have used the superscript x to denote that these could be either bulk (x = b)
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fields in the full plane or boundary (x = s) fields in the upper half plane. In the later

case, z1 and z2 will be real. Further, the one point function (expectation value) of the

fields in any field theory (not necessarily a CFT) have the finite size scaling behavior,

〈φ(zx)〉 =
1

L
Xx

φ

, (2.22)

where L is the linear system size.

Using the transformation w(z) = zθ/π in Eq. (2.20), Cardy pointed out [16] that

a boundary primary field φ in the upper half plane with a scaling dimension Xsφ has

a modified scaling dimension πXsφ/θ when it is located on the tip of a wedge of angle

θ as can be seen from Eq. (2.21) and Eq. (2.22).

Again using the transformation w(z) =
L

2π
ln z in Eq. (2.20), it can be shown

[20] that the two point correlation function of the bulk primary field φ(zb) decays

exponentially with a correlation length
L

2πXbφ
along the length of a cylinder of cir-

cumference L. A similar statement can be made [20] that the two point correlation

function of the boundary primary field φ(zs) decays exponentially with a correlation

length
L

πXsφ
along the length of a strip of width L.

Now if we identify the operators corresponding to the wave function moments in

Eq. (2.15) as Virasoro primaries, then the above mentioned transformations enable

us to relate the mutifractal exponents in infinite and semi-infinite plane geometry to

exponents in a wedge geometry and in the cylinder and strip geometry. Numerical

verification of the relations below constitute stringent tests for conformal invariance

at a 2D LD transition.

The half-plane to wedge transformation implies a relation between the boundary
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and corner multifractal exponents as:

∆θ
q =

π

θ
∆s
q. (2.23)

Here we have denoted the multifractal exponent at the tip of a wedge of angle θ as

∆θ
q . We have to be careful in using this relation for all values of q. This is because the

strict positivity bound on the Legendre transformed variable α mentioned in Sec. 2.2

will constrain the range of q over which the above relation is valid. We will discuss

this in more detail in the Chapter 5 when we discuss numerical simulations of the 2D

symplectic-class transition.

Next we use the mapping from the complex plane to the cylinder and from the

upper half plane to the strip and relate the bulk and boundary multifractal exponents

to the localization length on the cylinder and strip. Taking the limit q → 0, we arrive

at the relations,

ξp
L

=
1

αb0 − 2
, and

ξs
L

=
2

αs0 − 2
. (2.24)

Here ξc and ξs are the localization lengths of the wave function in the cylinder and

strip geometry with L being the circumference of the cylinder or the width of the

strip.



Chapter 3

Spin Quantum Hall Transition

3.1 Network model

The spin quantum Hall (SQH) transition was first studied, numerically, in Ref. [21].

A simple physical picture of the SQH effect was given in Ref. [22] and we direct the

reader to this reference for a clear discussion of the basic physics of the SQH transition.

Here we discuss the network model formulation of the SQH transition as explained

in Refs. [21-23]. Network models have been very convenient for both numerical and

analytical work on various disordered non-interacting fermion problems. The best

known such model is the Chalker-Coddington network model [24] for the integer

quantum Hall plateau transition.

Similar network models can be constructed for other localization problems, includ-

ing the chiral metal [25,26], the random bond Ising model and the thermal quantum

Hall effect [27-30].

The SQH network consists of a lattice of directed links and two types of nodes, A

and B, forming a square lattice (see Fig. 3.1) on which spin-1/2 particles at energy

ǫ = 0 can propagate. Uni-directional propagation through each link is represented

by a random SU(2) matrix. As in the case of Chalker-Coddington network, to study

the critical behavior at the SQH transition it is sufficient to introduce disorder only

for propagation along the links, while all the nodes can be taken to have the same

(non-random) scattering matrices. The node scattering matrices are diagonal in the

18
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B

A

Figure 3.1: SQH network with a vertical reflecting boundary. The black squares
represent the non-random node scattering matrices [Eq. (3.1)]. The black circles on
the links represent the random SU(2) scattering matrices.

spin indices: SS = SS↑ ⊗ SS↓,

SSσ =







(1− t2Sσ)1/2 tSσ

−tSσ (1− t2Sσ)1/2






, (3.1)

where S = A,B labels whether the node is on the A or the B sublattice, and σ =↑, ↓

labels the spin-index of the propagating particle. Apart from the case of boundary

nodes (which will be treated in detail later), the remaining network is isotropic (in-

variant under 90 degree rotation of the lattice) when the scattering amplitudes on the

two sublattice nodes are related by t2Aσ + t2Bσ = 1. The critical point of the isotropic

network is located at tAσ = tBσ = 1/
√

2. Varying tSσ while keeping t2Aσ + t2Bσ = 1

and tS↑ = tS↓ drives the system between a spin insulator and a SQH state and the

spin Hall conductance jumps from 0 to 2. Taking tS↑ 6= tS↓ breaks the global SU(2)

symmetry and splits the transition into two ordinary IQH transitions each in the
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unitary symmetry class (investigated, for example, in Ref. [24]). Here we consider

only the spin-rotation invariant case with tS↑ = tS↓ = tS .

3.2 Green’s functions and symmetries

Network models can be studied using either a first quantized or a second quantized

formalism. The first quantized method is adopted in Refs. [31- 33]. It is also very

useful for numerical work. Here we use it to derive certain symmetry relations. The

rest of this chapter will employ the second quantized formalism (see next section).

All physical quantities of interest in the SQH problem such as wave function cor-

relators and conductance can be expressed in terms of the Green’s functions. Usually,

the latter are represented in continuous time notation, but the network models use the

discrete time analogs. In particular, network models use a single step time-evolution

operator U which acts on the single particle wave function Ψ(r, t) at discrete time t

to give the wave function at time t+ 1, where r denotes a link of the network. For a

network with N links, U is a 2N × 2N matrix (accounting for the spin-index), which

represents a finite-time version of the infinitesimal time-evolution operator. Thus

U = exp{iH} where the Hamiltonian H (which describes the time evolution of the

edge states separating ‘puddles’ of topologically distinct regions) has the following

symmetry property due to the spin rotation invariance in the problem [22],

σyHσy = −H∗, . (3.2)

This implies that U is a (unitary) symplectic matrix and as such satisfies the condition

U−1 = σyUTσy. (3.3)
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where σy is the conventional Pauli matrix acting on the 2 dimensional spin space.

Now we can write the retarded [advanced] Green’s function GR(r1, r2) [GA(r1, r2)]

as the resolvent of the operator U :

[

GR(r1, r2)
]

αβ =
〈

r1, α
∣

∣

∣

1

1− zU
∣

∣

∣
r2, β

〉

, (3.4)

[

GA(r1, r2)
]

αβ =
〈

r1, α
∣

∣

∣

1

1− z−1U
∣

∣

∣r2, β
〉

. (3.5)

Here z = ei(ǫ+iγ) where ǫ is the energy and γ is a finite level broadening. Since the

SQH transition of interest to us occurs only at zero energy, we will set ǫ = 0 and

hence z = e−γ from here on. In the above equation, (r1, r2) and (α, β) denote the

network link and the spin index, respectively.

Making use of Eq. (3.3) in Eqs. (3.4, 3.5) leads to the following relationship be-

tween advanced and retarded Green’s functions

[

GA(r1, r2)
]

α′α− δα′αδr1,r2 = ǫαβ
[

GR(r2, r1)
]

ββ′ǫβ′α′ , (3.6)

where ǫαβ is the antisymmetric Levi-Civita tensor. The above equation will turn out

to be crucial for our calculations since it implies that we need not introduce separate

operators for the advanced sector Green’s functions but can work solely with retarded

ones (as we will see below).

3.3 Second-quantized description in the bulk

All network models can also be studied using the second-quantized supersymmetry

(SUSY) technique [26,34,35].

The second-quantization of the SQH network is described in Ref. [23] and we

review the main steps here. The basic idea is quite similar to the transfer matrix
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formulation of various 2D statistical mechanics problems such as the Ising model (for

a review, see Ref. [36]). The presence of disorder introduces a number of additional

features which are sketched below.

All physical quantities in the network model including conductance, wave function

amplitudes etc. may be expressed in first quantization in terms of sums over paths

on the network. Such a sum may be written in second-quantized supersymmetric

(SUSY) language as a correlation function, 〈. . .〉 ≡ STr
[

. . . (UBUA)LT
]

where the

supertrace ‘STr’ contains the row-to-row transfer matrices UA and UB and the ellipsis

. . . stands for operators that are inserted at the beginning and the ends of paths and

correspond physically to density, current, etc. LT is the number of A nodes (or B

nodes) along the vertical direction, interpreted as discrete (imaginary) time. (The

operator (UBUA)LT was denoted by U in Ref. [23]). The supertrace STr implements

periodic boundary condition along the vertical direction. Let there be LX nodes in

each row (the ‘horizontal’, or X direction). The operator UA (resp. UB) is formed by

multiplying all the LX transfer matrices at A (resp. B) nodes in a given row. These

matrices act on a tensor product of bosonic and fermionic Fock spaces defined for each

vertical column of links. The quantum state in the Fock spaces in each horizontal

row of links should be thought of as resulting from the quantum state of the previous

(in discrete imaginary time) row upon action of either UA or UB , within a single

time step. The presence of a fermion or boson on a link represents an element of a

path traversing that link [26,35]. Both bosons and fermions are needed to ensure the

cancelation of contributions from closed loops (this ensures that STr (UBUA)LT = 1).

Usually one needs two types of bosons and fermions, ‘retarded’ and ‘advanced’,

to be able to obtain two-particle properties (that is averages of products of retarded

and advanced Green’s functions) relevant for the calculation of transport properties.

However, the symmetry relation in Eq. (3.6) relates retarded and advanced Green’s
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functions. Hence, as it turns out, for the computation of low enough moments of,

say, retarded Green’s functions, we need only one fermion and one boson per spin

direction per link of a row. (This will be discussed in detail below.) We denote

them by fσ, bσ for the links going up (up links), and f̄σ, b̄σ for the down links.

On the up links, fσ, bσ satisfy canonical fermion and boson commutation relations,

respectively. But to ensure the cancelation of closed loops we must either take the

fermions on the down links to satisfy {f̄σ, f̄†σ′} = −δσσ′ (while fermions on the up

links and bosons on both types of links satisfy canonical commutation relations), or

do the same for the bosons on down links instead of the fermions. Each node transfer

matrix can be written in terms of these bosons and fermions. For any given disorder

realization, this node transfer matrix turns out to commute with all the generators of

the sl(2|1) superalgebra, as shown in Ref. [23] (see Appendix A for a summary of the

relevant superalgebra representation theory). Performing the average over disorder

(independently on each link) projects [23] the Fock space of bosons and fermions

into the fundamental (dual-fundamental) 3 dimensional representation of sl(2|1) on

up links (down links). These are precisely the states which are singlets under the

random (‘gauge’) SU(2) on the links.

3.4 Network boundary

The extension of the above formalism to the case of a network with a reflecting bound-

ary in the vertical direction is straightforward. Relegating some technical details to

Appendix B, the reflecting boundary is seen to preserve the full sl(2|1) SUSY present

in the bulk. Using the fully intact SUSY, one can then retain the mapping to the

perimeters of percolation clusters (we refer to them as hulls henceforth) obtained

in Ref. [23], but now the percolation hulls are confined to the half plane in two



24

dimensions with a reflecting boundary (see Fig. 3.1).

We will consider below correlation functions of operators in the network model

in the vicinity of the SQH transition. When using continuum notation one needs

to recall [37-39] that, in general, operators acquire additional singularities when ap-

proaching a boundary; they may vanish or diverge. By saying that points lie on the

boundary, we imply that these points are not literally located at the boundary, but

rather that the distance of the points from the boundary is much smaller than the

distance of these points from each other, and much smaller than the system size. The

same general reasoning will apply when we consider multifractality of wave functions

at the boundary. Let us recall that in the literature of surface transitions in ordinary

magnets, various kinds of cases which are often referred to as ‘ordinary’, ‘extraor-

dinary’ and ‘special’ boundary transitions are discussed, referring to the respective

ordering of bulk and boundary. The case of the reflecting boundary condition that

we consider here is analogous to the so-called ordinary surface transition where the

boundary and the bulk undergo the LD transition simultaneously.

We will need the bulk and boundary scaling dimension of the field theory operator

corresponding to a single percolation hull (the ‘1-hull’ operator) in various calculations

below. This has been derived using a variety of techniques in the literature [16, 40,

41] and is found to be xs = 1/3 for the boundary 1-hull operator. The corresponding

bulk operator has scaling dimension xb = 1/4.

3.5 Multifractality using supersymmetry

3.5.1 Wave function correlators

We have defined multifractal exponents in terms of moments of wave function at

a single point in the sample (see Chapter 2). In field theory, for calculating the
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multifractal exponent ∆x
q , (restricting q to be an integer,) it is easier to find the

scaling of correlation function of q operators, each corresponding to the wave function

intensity L2|ψ(r)|2. The q-point correlations of critical eigenfunction intensities take

on a convenient scaling form when the distances between all points are equal to the

same scale r, that is, |ri − rj |∼ r . In this case, it follows from the discussion in

Sec. 2.3 that

Lq(d+µx)|ψ(r1)ψ(r2) . . . ψ(rq)|2 ∼
( r

L

)∆x
q
, (3.7)

where L is the linear system size. The location of the operators can be in the bulk,

boundary or in a corner of the sample. The above equation is easily related to the

equations in Sec. 2.3 by considering the limit when r is of the scale of lattice spacing,

i.e. when all operators essentially lie at the same point and can be considered as a

single operator corresponding to the quantity L2|ψ(r)|2 raised to power q.

Off criticality (that is, for ǫ 6= 0 or γ > 0 in the SQH system), multifractal

scaling behavior holds on length scales much shorter than the localization length

[23] ξγ ∼ γ−4/7, beyond which the wave function amplitudes are exponentially small

[32,33]. This implies that off criticality, the above q-point correlator should be written

as

Lq(d+µx)|ψ(r1)ψ(r2) . . . ψ(rq)|2 ∼
( r

ξγ

)∆x
q
, r ≪ ξγ. (3.8)

Assuming that all wave functions at a given energy show statistically identical mul-
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tifractal scaling behavior, one can write the above correlator as

Lq(d+µx)|ψ(r1)ψ(r2) . . . ψ(rq)|2 (3.9)

=

∑

i1,i2...iq
|ψi1(r1)ψi2(r2) . . . ψiq(rq)|2δ(ǫ1 − ǫi1)δ(ǫ2 − ǫi2) . . . δ(ǫq − ǫiq)

ρ(ǫ1) ρ(ǫ2) . . . ρ(ǫq)
, (3.10)

where i1, i2 . . . iq are additional quantum numbers required, besides position r, to

label the wave function (energy and spin in the SQH case). ρ represents the global

density of states. The above line is similar to what we did in Sec. 2.3 to relate the wave

function moments to field theory operators. Taking ǫ1, ǫ2 . . . ǫq ∼ ǫ and |ri − rj | ∼ r ,

we see that the exponent ∆x
q is given by the scaling behavior of D̃xq (r1, r2 . . . rq; ǫ)

with respect to r, where the function D̃xq is defined by

D̃xq (r1, r2 . . . rq; ǫ) =
∑

i1,i2...iq

|ψi1(r1)ψi2(r2) . . . ψiq(rq)|2δ(ǫ− ǫi1)δ(ǫ− ǫi2) . . . δ(ǫ− ǫiq).

(3.11)

We understand that the points r1 . . . rq are all chosen to lie in the regionMx consid-

ered in Eq. (2.2).

Using the Green’s functions defined in Sec. 3.2, we can write the above wave

function correlator (ignoring overall factors of (2π)−q) as

D̃xq (r1, r2 . . . rq; z) ∝
q
∏

k=1

tr [GR(rk, rk)−GA(rk, rk)]. (3.12)

Here ‘tr’ denotes the trace over the spin indices. As was discussed in Ref. [32], the
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multifractal exponents can also be obtained from a different Green’s function product,

Dqx(r1, r2 . . . rq; z) ∝ tr

q
∏

k=1

[GR(rk, rk+1)−GA(rk, rk+1)], (3.13)

where rq+1 ≡ r1. When |ri − rj | ∼ r , this product shows the same scaling behavior,

r∆
x
q as the previous one. Since the calculations of both functions D̃ and D are very

similar, we have explained in detail only the calculation of D̃. By suitably choosing

the correct SU(2) invariant (see next section), we will extract below the scaling of

D̃. Our results agree with those previously obtained in Ref. [32] for the bulk case,

x = b, but we obtain these results using a different method (namely that developed

in Ref. [23], using supersymmetry). For the other cases, x = s (boundary) and x = c

(corner), our results are entirely new.

3.5.2 Calculation of ∆2

We start with the calculation of the exponent ∆x
q for the case q = 2. The corre-

sponding Green’s function product that we have to evaluate is (dependence on z =

= exp(−γ), defined in Eqs (3.4, 3.5), is understood)

D̃x2 (r1, r2) ∝ tr [GR(r1, r1)−GA(r1, r1)] tr [GR(r2, r2)−GA(r2, r2)]. (3.14)

Using Eq. (3.6), we can write the above relation in terms of retarded functions alone

as

D̃x2 (r1, r2) ∝ tr [GR(r1, r1)− 1] tr [GR(r2, r2)− 1]

= trGR(r1, r1)trGR(r2, r2)− trGR(r1, r1)− trGR(r2, r2) + 1. (3.15)
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We will use the supersymmetry technique [26,34,35] to implement the disorder average

and express [23] all averaged Green’s functions using the second quantized formalism

in terms of generators of the sl(2|1) Lie superalgebra. (A summary of certain basic

elements of the relevant representation theory of the sl(2|1) superalgebra is presented

in Appendix A.)

The retarded Green’s functions can be expressed as expectation values of canonical

boson and fermion operators. (From here on, all Green’s functions are understood

as retarded unless they have an explicit subscript A). Specifically, we can write the

following Green’s functions, in any fixed realization of disorder, as (the subscripts

below refer to both, the spatial coordinate and the spin index)

Gij = STr
[

bib
†
j(UBUA)LT

]

= 〈bib
†
j〉, (3.16)

Gkn = STr
[

fkf
†
n(UBUA)LT

]

= 〈fkf
†
n〉, (3.17)

GijGkn = STr
[

bib
†
jfkf

†
n(UBUA)LT

]

= 〈bib
†
jfkf

†
n〉. (3.18)

(Here, the fact that STr (UBUA)LT = 1 was used.) Let us take i → (r1, α1), j →

(r1, β1), k → (r2, α2), and n → (r2, β2) in the above equations. The LHS of the last

equation thus reads Gα1

β1
(r1, r1)G

α2

β2
(r2, r2). After performing the disorder average,

only SU(2) singlet combinations are non-vanishing. Hence we contract both sides

with the SU(2) invariant δα1

β1
δα2

β2
giving LHS = trG(r1, r1) trG(r2, r2). The RHS of

Eq. (3.18) is (we can raise and lower indices trivially since the metric is the unit

matrix)

RHS = δα1

β1
δα2

β2
〈bα1

(r1)b
†
β1

(r1)fα2
(r2)f

†
β2

(r2)〉 =
〈(

2B(r1) + 1
)(

1− 2Q3(r2)
)〉

.

(The expressions for the generators B and Q3 of the Lie superalgebra, as reviewed in
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Appendix A, were used.) Thus the LHS and RHS together imply:

trG(r1, r1)trG(r2, r2) =
〈(

2B(r1) + 1
)(

1− 2Q3(r2)
)〉

. (3.19)

Similarly, considering Eq. (3.17), let k → (r2, α2) and n → (r2, β2) giving LHS =

Gα2

β2
(r2, r2). To do disorder average, contract with the SU(2) invariant δ

β2
α2

, giving

LHS = trG(r2, r2). The RHS of Eq. (3.17) gives

RHS = δ
β2
α2
〈fα2

(r2)f
†
β2

(r2)〉 =
〈

1− 2Q3(r2)
〉

. (3.20)

Hence from LHS and RHS, we obtain

trG(r2, r2) =
〈

1− 2Q3(r2)
〉

. (3.21)

Now using Eqs. (3.19) and (3.21), we can write Eq. (3.15) as

D̃x2 (r1, r2) ∝ −
〈

B(r1)Q3(r2)
〉

. (3.22)

We will now compute this correlator off criticality, at a finite correlation length ξγ,

arising from a non-vanishing ‘broadening’ γ > 0, that is z = exp(−γ) < 1.

The angular brackets in Eq. (3.22) denote the supertrace ‘STr’ taken over the

full Fock space of canonical bosons and fermions on each link of the network before

disorder averaging. As explained in Ref. [23], the disorder average projects this

Fock space into the fundamental three-dimensional representation of sl(2|1) on the

up links and the corresponding dual representation on the down links. To sum only

over the three states in this representation, we use the notation ‘str’ (see Eq. (3.23)).

We note that the state with odd fermion number in both of these representations
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has negative norm [23]. The prefix ‘s’ in str denotes the fact that these negative

norm states contribute to the trace with a negative sign. This is essential to get the

correct overall factor of unity for each loop traversed [23]. The action of the node

transfer matrix, TSσ, on the tensor product of the disorder-averaged states on an up

link and a neighboring down link can be represented by a linear combination of the

only two sl(2|1) invariant operators in this 3 × 3 dimensional vector space. These

are the identity operator and the projection operator onto the singlet state, with

weights 1− t2Sσ and t2Sσ respectively. These weights can be considered as the classical

probability of a state turning left or right at a given node under the action of the

node transfer matrix. When we multiply all such node transfer matrices together,

the partition function can be represented as a sum over all classical configurations

of densely packed loops (the closed classical paths along which the disorder averaged

states propagate) on a square lattice. Each loop gets an overall weight which is the

product of the probabilities of turning in a particular direction at each node. The

loops can be interpreted (see Ref. [23] for a diagrammatic perspective) as the external

perimeters of a cluster percolating along the bonds of a square lattice. This completes

the mapping to percolation identified in Ref. [23].

Now, in order to evaluate a disorder averaged correlator such as the one in Eq.

(3.22), consider the three-dimensional representation on the links (for example, the

case where r1 and r2 lie on up links) and all calculations are done in this represen-

tation. A loop passing through a link corresponds to all three states in the three-

dimensional sl(2|1) representation propagating on that link. Away from criticality,

we assign a factor of z2(B+Q3) for each such link since the operator 2(B+Q3) counts

the number of states propagating on that link. The product of these factors along a

path on the network gives the same power of z that occurs in the Taylor expansion of

a matrix element of the Green’s function in Eq. (3.4). After multiplying such factors
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for all links through which a given loop passes, we also multiply it with the overall

weight coming from the classical probability of the loop turning at each node as men-

tioned in the previous paragraph. Further, if there are operators inserted at specific

points on the lattice, the only loops contributing to the correlation function are those

which are constrained to pass through these points. Considering the correlator in Eq.

(3.22), there are two different kinds of loop configurations which contribute: (1) a

single loop passes through both points r1 and r2, (2) two different loops pass through

each of these two points, r1 and r2. These two terms are the probabilistic versions of

the usual connected and disconnected parts of any correlation function. Writing the

contribution for each of these types separately and summing over all possible loop

configurations together with their respective weights, we write Eq. (3.22) as

4〈B(r1)Q3(r2)〉

=
∑

N12,N21

str









1 0 0

0 2 0

0 0 1

















1 0 0

0 z2N12 0

0 0 z2N12

















−1 0 0

0 0 0

0 0 1

















1 0 0

0 z2N21 0

0 0 z2N21









× P (r1, r2;N12, N21)

+
∑

N,N ′

str









1 0 0

0 2 0

0 0 1

















1 0 0

0 z2N 0

0 0 z2N









str









−1 0 0

0 0 0

0 0 1

















1 0 0

0 z2N
′

0

0 0 z2N
′









× P−(r1, r2;N,N
′)

= −
∑

N

[

1− z2N
]

P (r1, r2;N)−
∑

N,N ′

[

1− z2N
][

1− z2N ′]
P−(r1, r2;N,N

′),

(3.23)

where P (r1, r2;N) is the probability of a single loop of length N passing through

both r1 and r2, and P−(r1, r2;N,N
′) is the probability that in a given percolation
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configuration the points r1 and r2 belong to two different, non-overlapping loops

of lengths N and N ′, respectively. In the above equation, the probability factor

P (r1, r2;N12, N21) is for a path of length N12 going from r1 to r2 and then a path

of length N21 returning from r2 to r1. In the next line, we simplified this using the

fact that this is the same as a loop of overall length, N = N12 +N21 passing through

both the points, and setting P (r1, r2;N) := P (r1, r2;N12, N21). The appearance of

these classical percolation probabilities in the above formula arises from the product

of the individual factors for turning left or right at each node of the network model.

Thus, using Eq. (3.23), we can write Eq. (3.22) as:

D̃x2 (r1, r2) ∝
∑

N

[

1− z2N
]

P (r1, r2;N)

+
∑

N,N ′

[

1− z2N
][

1− z2N ′]
P−(r1, r2;N,N

′). (3.24)

We see that the leading order terms turn out to vanish in the critical limit z → 1,

as observed in Ref. [32]. So we need to consider the sub-leading behavior. The

percolation probabilities discussed above are the Laplace transformed versions of the

correlation functions of 1-hull operators in percolation. The 1-hull operator repre-

sents the density-of-states operator in the SQH problem [23]. We know the scaling

dimension of these operators as mentioned in the last paragraph in Sec. 3.4. Under

the Laplace transform, the variable N is the conjugate of the energy ǫ+ iγ ≡ −i ln z

which is represented by the 1-hull operator. Now, using the scaling dimensions of the

1-hull operator to deduce the scaling of the Laplace transformed correlation functions

(see, for example, Ref. [42]), one finds the following leading scaling behavior of the
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above-mentioned probabilities:

P (r1, r2;N) ∼ N−2/(2−xb)r−xb ∼ N−8/7r−1/4, (3.25)

P−(r1, r2;N,N
′) ∼ P (r1;N)P (r2;N

′) ∼ N−8/7N ′−8/7, (3.26)

where P (r1;N) is the probability that the point r1 belongs to a loop of length N . The

points r1 and r2 lie in the bulk and r = |r1 − r2| ≪ ξγ ∼ γ−4/7 ∼ N4/7. Similarly,

the scaling expressions in the case where both points lie on the boundary are

P (r1, r2;N) ∼ N−1−xs/(2−xb)r−xs ∼ N−25/21r−1/3, (3.27)

P−(r1, r2;N,N
′) ∼ P (r1;N)P (r2;N

′) ∼ N−25/21N ′−25/21. (3.28)

We see that only the first term in Eq. (3.24) (which is the connected part) gives rise

to the non-analytic r dependence in the limit r ≪ ξγ, which we are interested in

computing. Hence the scaling of D̃x2 (r1, r2) is given by:

D̃x2 (r1, r2) ∼
∑

N

[

1− e−2Nγ]P (r1, r2;N) ∼















r−1/4 (bulk) ,

r−1/3 (boundary).

(3.29)

Thus, upon comparison with Eq. (3.8), we finally read off the multifractal exponent

for q = 2 as being ∆b
2 = −1/4 for the bulk, and ∆s

2 = −1/3 for the boundary.

We will discuss the case of the wave function scaling behavior at corners at the end

(see Sec. 3.7) as it is a straightforward extension of the boundary case upon making

use of conformal invariance. In the next subsection, we consider the more interesting

exponent describing the scaling of the third moment of the square of the wave function

amplitudes.
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3.5.3 Calculation of ∆3

The algebraic procedure for calculating the multifractal exponent ∆q for q = 3 is

almost same as that we used above for q = 2. Hence we present only the important

steps and focus on the main results and the interesting differences. We start with the

expression:

D̃x3 (r1, r2, r3) ∝ tr [GR(r1, r1)−GA(r1, r1)]

× tr [GR(r2, r2)−GA(r2, r2)] tr [GR(r3, r3)−GA(r3, r3)]. (3.30)

Converting all advanced Green’s functions to retarded ones using Eq. (3.6), we can

write the above equation as:

D̃x3 (r1, r2, r3) ∝ tr [G(r1, r1)− 1] tr [G(r2, r2)− 1] tr [G(r3, r3)− 1]

= trG(r1, r1) trG(r2, r2) trG(r3, r3)− 1

−
∑

[r1,r2,r3]

trG(r1, r1) trG(r2, r2) +
∑

[r1,r2,r3]

trG(r1, r1), (3.31)

where
∑

[r1,r2,r3]
denotes sum over terms with all cyclic permutations of (r1, r2, r3).

The new piece we have to evaluate here is the product of three Green’s functions.

For this consider the following two identities, obtained by applying Wick’s theorem,

and valid in any fixed realization of disorder:

[

GijGlm +GimGlj
]

Gkn = 〈bib†jblb
†
mfkf

†
n〉. (3.32)

Exchanging bosons and fermions in the above equation, we find

[

GijGlm −GimGlj
]

Gkn = 〈fif†j flf
†
mbkb

†
n〉. (3.33)
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In Eq. (3.32), let i→ (r1, α1), j → (r1, β1), l → (r2, α2), m→ (r2, β2), k → (r3, α3),

n→ (r3, β3), yielding

LHS = [Gα1

β1
(r1, r1)G

α2

β2
(r2, r2) +Gα1

β2
(r1, r2)G

α2

β1
(r2, r1)]G

α3

β3
(r3, r3). (3.34)

As above, it is convenient to contract with the SU(2) invariant δ
β1
α1
δ
β2
α2
δ
β3
α3

, after per-

forming the disorder average

trG(r1, r1) trG(r2, r2) trG(r3, r3) + trG(r3, r3) tr [G(r1, r2)G(r2, r1)]

= 〈bα(r1)b
†
α(r1)bβ(r2)b

†
β(r2)fγ(r3)f

†
γ(r3)〉

=
〈

[1 + 2B(r1)] [1 + 2B(r2)] [1− 2Q3(r3)]
〉

. (3.35)

We see that the first term on the LHS of Eq. (3.35) is the Green’s function product we

want to evaluate in Eq. (3.31), while the second term has to be eliminated. This can

be achieved by performing steps, analogous to those above, in Eq. (3.33), yielding

trG(r1, r1) trG(r2, r2) trG(r3, r3)− trG(r3, r3) tr [G(r1, r2)G(r2, r1)]

= 〈fα(r1)f
†
α(r1)fβ(r2)f

†
β(r2)bγ(r3)b

†
γ(r3)〉

=
〈

[1− 2Q3(r1)] [1− 2Q3(r2)] [1 + 2B(r3)]
〉

. (3.36)

Adding Eqs. (3.35) and (3.36), we obtain

2 trG(r1, r1) trG(r2, r2) trG(r3, r3) =
〈

[1 + 2B(r1)] [1 + 2B(r2)] [1− 2Q3(r3)]

+ [1− 2Q3(r1)] [1− 2Q3(r2)] [1 + 2B(r3)]
〉

.

(3.37)
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We can now use Eqs. (3.19), (3.21), and (3.37) to write Eq. (3.31) as

D̃x3 (r1, r2, r3) ∝
〈

[1 + 2B(r1)] [1 + 2B(r2)] [1− 2Q3(r3)]

+ [1− 2Q3(r1)] [1− 2Q3(r2)] [1 + 2B(r3)]
〉

+
∑

[r1,r2,r3]

〈

1 + 2B(r1)
〉

−
∑

[r1,r2,r3]

〈

[1− 2Q3(r1)] [1 + 2B(r2)]
〉

− 1. (3.38)

Converting these expressions to percolation probabilities is exactly analogous to the

two point case. Taking the critical limit z → 1, we obtain

D̃x3 (r1, r2, r3) ∝ P (r1, r2, r3) + P (r1, r3, r2). (3.39)

where P (r1, r2, r3) is the probability of a loop of any size traversing r1, r2, r3 in that

order. There is no cancelation to leading order at criticality here, unlike the two point

case. The final scaling of this correlator is simply given by that of the usual 3-point

correlation function of percolation 1-hull operators at criticality,

P (r1, r2, r3), P (r1, r3, r2) ∼















r−3xb ∼ r−3/4 (bulk),

r−3xs ∼ r−1 (boundary).

(3.40)

Hence the value of multifractal exponent for q = 3 is ∆b
3 = −3/4 and ∆s

3 = −1, for

bulk and boundary, respectively.

3.5.4 Higher multifractal exponents

The procedure for calculating ∆x
3 was very similar to that of ∆x

2 (albeit more tedious)

and one might ask if it can be extended to higher multifractal exponents, ∆x
q with
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q > 3. On the other hand however, the fact that we are able to calculate ∆x
3 at

all using our formalism is conceptually surprising because usually in supersymmetric

problems, an additional set (=‘replica’) of boson and fermion operators is required

for each additional Green’s function factor entering the product in Eq. (3.12). Here

we are able to calculate both two and three-point functions with the same number of

boson and fermion operators (replicas).

To understand this, we look at the calculation of ∆3 carefully. We had an extra

‘unwanted’ Green’s function product in Eq. (3.35). But we were able to eliminate

it by using an equation similar to Eq. (3.36), with bosons and fermions exchanged.

The unwanted Green’s function product canceled between Eq. (3.35) and Eq. (3.36)

when added together, giving us the exact product that we wanted.

Now does such a cancelation go through for higher point functions? To answer

this, we look at the next higher exponent, ∆x
4 . Here we will have to evaluate a product

of four Green’s functions,

trG(r1, r1) trG(r2, r2) trG(r3, r3) trG(r4, r4).

To evaluate this, we will have to use the following identity obtained from Wick’s

theorem (in a fixed realization of disorder):

[

GijGlm −GimGlj
] [

GpqGrs +GpsGrq
]

= 〈fif†j flf
†
mbpb

†
qbrb

†
s〉. (3.41)

In this equation, let again i → (r1, α1), j → (r1, β1), l → (r2, α2), m → (r2, β2),

p → (r3, α3), q → (r3, β3), r → (r4, α4), s → (r4, β4). Then contracting with the
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SU(2) invariant δ
β1
α1
δ
β2
α2
δ
β3
α3
δ
β4
α4

gives us upon averaging the relation:

trG(r1, r1) trG(r2, r2) trG(r3, r3) trG(r4, r4)

+ trG(r1, r1) trG(r2, r2) tr [G(r3, r4)G(r4, r3)]

− tr [G(r1, r2)G(r2, r1)] trG(r3, r3) trG(r4, r4)

− tr [G(r1, r2)G(r2, r1)] tr [G(r3, r4)G(r4, r3)]

=
〈

[1− 2Q3(r1)] [1− 2Q3(r2)] [1 + 2B(r3)] [1 + 2B(r4)]
〉

. (3.42)

There are three unwanted terms on the LHS. Exchanging bosons and fermions gives

on the other hand:

trG(r1, r1) trG(r2, r2) trG(r3, r3) trG(r4, r4)

− trG(r1, r1) trG(r2, r2) tr [G(r3, r4)G(r4, r3)]

+ tr [G(r1, r2)G(r2, r1)] trG(r3, r3) trG(r4, r4)

− tr [G(r1, r2)G(r2, r1)] tr [G(r3, r4)G(r4, r3)]

=
〈

[1− 2Q3(r3)] [1− 2Q3(r4)] [1 + 2B(r1)] [1 + 2B(r2)]
〉

. (3.43)

Adding Eq. (3.42) and Eq. (3.43) eliminates two unwanted pieces:

2 trG(r1, r1) trG(r2, r2) trG(r3, r3) trG(r4, r4)

− 2 tr [G(r1, r2)G(r2, r1)] tr [G(r3, r4)G(r4, r3)]

=
〈

[1 + 2B(r1)] [1 + 2B(r2)] [1− 2Q3(r3)] [1− 2Q3(r4)]
〉

+

〈

[1− 2Q3(r1)] [1− 2Q3(r2)] [1 + 2B(r3)] [1 + 2B(r4)]
〉

. (3.44)

We are still left with one unwanted piece which cannot be evaluated or canceled with
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something else. Any other combination of the generators of the Lie superalgebra

at four points will generate more terms on applying Wick’s theorem and cannot be

canceled out.

Now we see the special feature of the three point calculation. We had two Green’s

function products (by applying Wick’s theorem), of which only one was necessary.

The supersymmetric formulation gave us one more equation due to boson-fermion

interchangeability. The unwanted piece canceled between the fermionic and bosonic

equations. This fact does not help us in higher correlation functions as they have

more unwanted pieces. It is also clear that situation becomes worse for higher n-

point functions. Interestingly, the same conclusion was reached in a very different

way in Ref. [32].

3.6 Local density of states and point contact conductance

Having considered the multifractal calculation in detail, the calculation of other

boundary critical exponents is completely analogous and we list only the important

results. Some of the bulk exponents were found in Refs. [23, 31, 32] using a very

different technique. The averaged local density of states (LDOS), summed over the

spin indices, can be written in terms of Green’s functions as

〈ρx(r, ǫ)〉 =
1

4π
tr [GR(r, r)−GA(r, r)] =

1

2π
trGR(r, r)− 1. (3.45)

This can again be expressed in terms of the sl(2|1) supersymmetry generators as

(1/2π)
〈

2B(r)
〉

. This average, following the same steps presented in Sec. 3.5.2, can
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be written in terms of percolation probabilities as

〈

2B(r)
〉

= 1−
∑

N

P (r;N) cos 2Nǫ. (3.46)

(The same result was also obtained in Ref. [31] using, as mentioned, different tech-

niques.) As we have mentioned at the end of Sec. 3.4, the boundary and the bulk

scaling dimensions of the one hull operator are xs = 1/3 and xb = 1/4. The latter

value implies that the percolation hull has fractal dimension 2 − xb = 7/4, so that

P (r,N) ∼ N−8/7 for r in bulk. This yields, according to Eq. (3.45), the following

scaling behavior of the LDOS [23]

ρb(ǫ) ∝ ǫxb/(2−xb) = ǫ1/7. (3.47)

Note that 2− xb = 7/4 is the dynamic critical exponent governing the scaling of

energy with the system size L at SQH criticality, so that the level spacing at ǫ = 0

(and thus the characteristic energy of critical states) is δ ∼ L−7/4. In our case, when

the point r is located at the boundary we find

P (r,N) ∼ N−1−xs/(2−xb) = N−25/21, (3.48)

and the LDOS scaling

ρs(r, ǫ) ∝ ǫxs/(2−xb) = ǫ4/21. (3.49)

Here we have used the bulk dynamic critical exponent in determining the energy

scaling of the boundary LDOS. This is because we are dealing with an ‘ordinary

surface transition’ and here surface (boundary) criticality is driven by the divergence
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of the bulk correlation length [43]. Thus the scaling of LDOS changes between bulk

and boundary. This means, as was mentioned in Sec. 3.5.1, that the average of the

(square of the) wave function amplitude is suppressed at the boundary, giving rise to

a non-vanishing value of µx=s = 1/3− 1/4 = 1/12 (see Eq. (2.19)).

A similar procedure is adopted for the calculation of other boundary exponents.

(Many of the calculated exponents are given in Tables 3.1 and 3.2). The boundary

diffusion propagator can be written as

〈Πss(r1, r2)〉 = 2
〈

V−(r1)W+(r2)
〉

, (3.50)

where r1 and r2 lie at the boundary. In terms of percolation probabilities this reads

〈Πss(r1, r2)〉 = 2
∑

N

P (r1, r2;N) z2N . (3.51)

Taking the limit z → 1 (critical point), gives

〈Πss(r1, r2)〉 = 2
∑

N

P (r1, r2;N) = 2P (r1, r2). (3.52)

Here the probability P (r1, r2) for the points r1and r2 to be connected by a hull of

any length scales at the boundary as r−2xs giving

〈Πss(r1, r2)〉 ∼ |r1 − r2|−2/3. (3.53)

Another physical quantity of interest is the boundary point-contact conductance.

In a network model setting, this is defined as the conductance between two boundary

links r1 and r2 which are cut to make it possible to insert and extract currents from
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them [44]. In the second quantized formalism, this translates to

〈gpoint(r1, r2)〉 ≡ 〈f
†

↑(r1)f
†

↓(r1)f↓(r2)f↑(r2)〉. (3.54)

In terms of sl(2|1) generators, this equals
〈

Q+(r1)Q−(r2)
〉

. Skipping here the map-

ping to percolation probabilities, we find that the point-contact conductance decays

exactly in the same way as the diffusion propagator, and, in particular, scales as

|r1 − r2|−2/3 at the boundary, at criticality.

3.7 Exponents in other geometries

There are two distinct ways of extending our discussion of boundary behavior. The

first one is when some of the points lie on the boundary while the others lie in the

bulk. The other case is to consider boundaries with more complicated geometries, the

simplest example of which would be a wedge with opening angle θ. (The boundary

case, considered in the previous sections corresponds to θ = π).

The two-point quantities are easily computed when one point r1 lies in the bulk

and the other point, r2 is at the boundary. These scale as r−(ηb+η‖)/2 where ηb and

η‖ are the usual exponents giving the decay of the two point function in the bulk

and along the boundary, respectively. Hence the diffusion propagator and the point-

contact conductance between a point in the bulk and another at the boundary, both

scale with distance r as r−7/12.

In the case of multifractal exponents, we can calculate the scaling behavior of

correlation functions similar to those in Eq. (3.12). But we should not interpret these

as representing properties of a single multifractal since multifractality is essentially

a single point property. With this caveat, the value of the quantity analogous to ∆2
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when one point is in the bulk and another is at the boundary is −1/4.

Geometry θ

LDOS ǫ1/7 ǫ4/21 ǫ(4/21)(π/ θ)

∆2 −1/4 −1/3 −π/3θ
∆3 −3/4 −1 −π/θ

Table 3.1: One-point exponents in various geometries.

Geometry θ

Diffusion

Propagator r−1/2 r−7/12 r−2/3 r−1/4−(1/3)(π/θ)

Table 3.2: Two-point exponents in various geometries. The point-contact conduc-
tance has the same scaling behavior as the diffusion propagator.

The next generalization is to analyze the SQH transition in a wedge geometry.

From the discussion in Sec. 2.4, it can be deduced that if we consider a 2-point

function with one point lying near the wedge tip and another deep in the bulk at

distance r, the two point function decays as r−ηθ where

ηθ = xb +
π

θ
xs. (3.55)

This enables us to calculate the relevant exponents. In the density of states calcula-

tion, we will have to replace xs with (π/θ)xs.

The central result of this chapter is the calculation of boundary critical and mul-

tifractal exponents for the spin quantum Hall transition in various geometries (see

Tables 3.1 and 3.2 for a summary of results).



Chapter 4

Power-law Random Banded Matrix Model

In this chapter, we analyze boundary criticality in the framework of the power-law

random banded matrix (PRBM) model [17, 45]. The model is defined [45] as the

ensemble of random Hermitean matrices Ĥ. Ĥ is real for a time-reversal invariant

system (orthogonal class, β = 1) and is complex otherwise (unitary class, β = 2).

The matrix elements Hij are independently distributed Gaussian variables with zero

mean 〈Hij〉 = 0 and variance given by

〈|Hij|2〉 = a2(|i− j|) , (4.1)

where a2(r) is given by

a2(r) =
1

1 + (r/b)2α
. (4.2)

At α = 1 the model undergoes an LD transition from the localized (α > 1) to the

delocalized (α < 1) phase. We concentrate below on the critical value α = 1, when

a(r) decreases as a(r) ∝ 1/r at r ≫ b. The parameter b determines the width of the

band of non-zero matrix elements in the PRBM model.

In a straightforward interpretation, the PRBM model describes a 1D sample with

random long-range hopping, the hopping amplitude decaying as 1/rα with the dis-

tance, with the parameter b setting the scale of hopping length. Furthermore, such

an ensemble arises as an effective description in a number of physical contexts (see

Ref. [17] for relevant references). At α = 1 the PRBM model is critical for arbitrary

values of b and shows all the key features of an LD critical point, including multi-

fractality of eigenfunctions [17, 45]. The existence of the parameter b which labels

44
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critical points is a distinct feature of the PRBM model: Eq. (4.1) defines a whole

family of critical theories parametrized by b. The limit b≫ 1 represents a regime of

weak multifractality, analogous to the conventional Anderson transition in d = 2 + ǫ

with ǫ≪ 1. This limit allows for a systematic analytical treatment via the mapping

onto a supermatrix σ-model and the weak-coupling expansion [17,45]. The opposite

limit b ≪ 1 is characterized by very strongly fluctuating eigenfunctions, similar to

the Anderson transition in d≫ 1, where the transition takes place in the strong dis-

order (strong coupling in the field-theoretic language) regime. It is also accessible to

an analytical treatment using a real-space renormalization-group (RG) method [17]

introduced earlier for related models in Refs. [46,47].

In addition to the feasibility of the systematic analytical treatment of both the

weak-coupling and strong-coupling regimes, the PRBM model is very well suited for

direct numerical simulations in a broad range of couplings. Here we employ the

PRBM model for the analysis of boundary multifractality. The existence of a line of

fixed points describing the critical system in the bulk makes this problem particularly

interesting. We will demonstrate that the boundary critical theory of the PRBM

model is not uniquely determined by the bulk properties. Instead, boundary criticality

is controlled by an additional parameter characterizing the hopping amplitudes of

particles reflected by the boundary.

The structure of this chapter is as follows. In Sec. 4.1 we formulate the model.

Sec. 4.2 is devoted to the analytical study of the boundary multifractal spectrum,

with the two limits b≫ 1 and b≪ 1 considered in Secs. 4.2.1 and 4.2.2, respectively.

In Sec. 4.3 we compare our analytical work with numerical results obtained by our

collaborators A. Mildenberger, F. Evers and A. D. Mirlin.
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4.1 Description of the model

We consider now the critical PRBM model with a boundary at i = 0, which means

that the matrix element Hij is zero whenever one of the indices is negative. The im-

portant point is that, for a given value of the bulk parameter b, the implementation

of the boundary is not unique, and that this degree of freedom will affect the bound-

ary criticality. Specifically, we should specify what happens with a particle which

“attempts to hop” from a site i ≥ 0 to a site j < 0, which is not allowed due to the

boundary. One possibility is that such hops are simply discarded, so that the matrix

element variance is simply given by 〈|Hij|2〉 = [1 + (i − j)2/b2]−1 for i, j ≥ 0. More

generally, the particle may be reflected by the boundary with certain probability p

and “land” on the site −j > 0. This leads us to the following formulation of the

model,

〈|Hij|2〉 = Jij , (4.3)

Jij =
1

1 + |i− j|2 /b2
+

p

1 + |i+ j|2 /b2
. (4.4)

While the above probability interpretation restricts p to the interval [0, 1], the model

is defined for all p in the range −1 < p < ∞. The newly introduced parameter p

is immaterial in the bulk, where i, j ≫ |i − j| and the second term in Eq. (4.4) can

be neglected. Therefore, the bulk exponents τb
q depend on b only (and not on p),

and their analysis performed in Ref. [17] remains applicable without changes. On the

other hand, as we show below by both analytical and numerical means, the boundary

exponents τ s
q are function of two parameters, b and p.

Equation (4.4) describes a semi-infinite system with one boundary at i = 0. For

a finite system of length L (implying that the relevant coordinates are restricted to
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0 ≤ i, j ≤ L) another boundary term, p′/[1 + (i+ j − 2L)2/b2], is to be included on

the right-hand side of Eq. (4.4). In general, the parameter p′ of this term may be

different from p. This term, however, will not affect the boundary criticality at the

i = 0 boundary, so we discard it below.

4.2 Analytical results for boundary multifractality in the

PRBM model

4.2.1 b≫ 1 case

The regime of weak criticality, b ≫ 1, can be studied via a mapping onto the su-

permatrix σ-model [17,45], in analogy with the conventional random banded matrix

model [48]. The σ-model action has the form

S[Q] =
β

4
Str



(πν)2
∞
∑

i,j=0

JijQiQj − iπνω
∞
∑

i=0

QiΛ



 , (4.5)

where Qr is a 4×4 (β = 2) or 8×8 (β = 1) supermatrix field constrained by Q2
r = 1,

Λ = diag(1,−1), and Str denotes the supertrace [34]. Furthermore, Jij are given

by Eq. (4.4), ω is the frequency, and ν is the density of states given by the Wigner

semicircle law

ν(E) =
1

2π2b
(4πb− E2)1/2 , |E| < 2

√
πb. (4.6)

For definitness, we will restrict ourselves to the band center, E = 0, below.

To calculate the multifractal spectrum to the leading order in 1/b≪ 1, we will need

the quadratic form of the action (4.5) expressed in terms of independent coordinates.
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Parametrizing the field Q (constrained to Q2 = 1) in the usual way,

Qi = Λ

(

1 +Wi +
W 2
i

2
+ . . .

)

, (4.7)

we obtain the action to the second order in the W fields,

S[W ] =
πνβ

4
Str

∞
∑

i,j=0

Wi

[

2πν(J
(i)
0 δij − Jij)− iωδij

]

Wj , (4.8)

where

J
(i)
0 =

∞
∑

k=0

Jik. (4.9)

The equation of motion for this action reads (after the Fourier transformation from

the frequency into the time domain)

∂Wi(t)

∂t
+ πν

∞
∑

j=0

[

δijJ
(i)
0 − Jij

]

Wj(t) = 0. (4.10)

This equation is the analog of the diffusion equation for a metallic system.

The σ-model action allows us to calculate the moments 〈|ψ(r)|2q〉 at a given point

r. On the perturbative level, the result reads [17,45,48]

〈|ψ(r)|2q〉 = 〈|ψ(r)|2q〉RMT

[

1 +
1

β
q(q − 1)Πrr

]

. (4.11)

Here the factor 〈|ψ(r)|2q〉RMT is the random-matrix-theory result equal to (2q −

1)!!L−q for β = 1 and q!L−q for β = 2. The second term in the square brackets

in Eq. (4.11), which constitutes the leading perturbative correction, is governed by

the return probability Πrr to the point r, i.e. the diagonal matrix element of the

generalized diffusion propagator Πrr′ . The latter is obtained by the inversion of the
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kinetic operator of Eqs. (4.8), (4.10),

πν

∞
∑

j=0

[

δijJ
(i)
0 − Jij

]

Πjm = δim − L−1. (4.12)

(The “diffusion” operator has a zero mode related to the particle conservation. The

term L−1 in the RHS of Eq. (4.12) ensures that the inversion is taken on the subspace

of non-zero modes.) In the bulk case, the inversion is easily performed via the Fourier

transform,

Πrr′ −→ Π̃(k) =
t

8|k| , |k| ≪ b−1, (4.13)

with t−1 = π
4 (πν)2b2, i.e. t = 4/b at the band center. The 1/|k| behavior of the

propagator should be contrasted to its 1/k2 scaling for a conventional metallic (diffu-

sive) system. This implies that the kinetics governed by Eq. (4.10) is superdiffusive

(known as a Lévy flight [49, 50]). Substitution of (4.13) in Eq. (4.11) yields a loga-

rithmic correction to the moments of the wave function amplitude,

〈|ψ(r)|2q〉 = 〈|ψ(r)|2q〉RMT

[

1 +
q(q − 1)

2πβb
ln
L

b

]

. (4.14)

Equation (4.14) is valid as long as the relative correction is small. The logarithmic

divergence of the return probability in the limit L → ∞, which is a signature of

criticality, makes the perturbative calculation insufficient for large enough L. The

problem can be solved [17,45] then by using the renormalization group (RG), which

leads to the exponentiation of the perturbative correction in Eq. (4.14). This gives

us a multifractal scaling as in Eq. (2.3) with the bulk multifractal exponents

τbq = (q − 1)

(

1− q

2πβb

)

. (4.15)
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The first term (unity) in the second factor in Eq. (4.15) corresponds to the normal

(metallic) scaling, the second one determines the anomalous multifractal exponents

∆b
q =

q(1− q)
2πβb

. (4.16)

At the boundary, the behavior is qualitatively the same: the return probability Πrr

increases logarithmically with the system size L, in view of criticality. However, as

we show below, the corresponding prefactor [and thus the prefactor in front of the

second term in square brackets in Eq. (4.14)] is different. After the application of the

RG this prefactor emerges in the anomalous multifractal exponent,

∆s
q =

q(1− q)
2πβb

Rp ≡ ∆b
qRp. (4.17)

In the presence of a boundary the system is not translationally invariant anymore,

which poses an obstacle for an analytical calculation of the return probability Πrr.

While for Lévy-flight models with absorbing boundary (that is obtained from our

equation (4.10) with p = 0 by a replacement of J
(i)
0 with its bulk value J0) analytical

progress can be achieved via the Wiener-Hopf method [51], it is not applicable in

the present case, since the kernel of Eq. (4.10) is not a function of i − j only. We

thus proceed by solving the classical evolution equation (4.10) numerically with the

initial condition Wi(0) = δir. The value Wr(t) of the solution at the point r (i.e. the

probability to find the particle at the initial point) decays with time as 1/t, so that

the integral
∫

dtWr(t) yields the logarithmically divergent return probability discussed

above. Extracting the corresponding prefactor, we find the anomalous multifractal

exponent,

∆q

q(1− q) =
1

β
tWr(t)|t→∞. (4.18)
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Note that the limit of the large system size L → ∞ should be taken in Eq. (4.18)

before t→∞, so that the particle does not reach the boundary for r in the bulk (or,

for r at the boundary, does not reach the opposite boundary).

We have checked that the numerical implementation of Eqs. (4.18), (4.10) re-

produces the analytical result (4.16) in the bulk. We then proceed with numerical

evaluation of the boundary multifractal exponents ∆s
q. For this purpose, we discretize

the time variable in Eq. (4.10) with a step ∆t = 1/2. With the parameters πν = 1/π,

b = 10, L = 10000, and t = 500, the product tWr(t) yields its required asymp-

totic value with the accuracy of the order of 2%. The results for the corresponding

prefactor Rp, as defined in Eq. (4.17), are shown in Fig. 4.1 for several values of p

between 0 and 3. It is seen that the boundary exponents not only differ from their

bulk counterparts but also depend on p.

For the particular case of the reflection probability p = 1 we can solve the evolution

equation (4.10) and find ∆s
q analytically. Indeed, the corresponding equation can be

obtained from its bulk counterpart (defined on the whole axis, −∞ < i < ∞) by

“folding the system” on the semiaxis i > 0 according to Wi(t) + W−i(t) −→ Wi(t),

cf. Ref. [52,53]. This clearly leads to a doubling of the return probability, so that

R1 = 2, (4.19)

in full agreement with the numerical solution of the evolution equation.

4.2.2 b≪ 1 case

In the regime of small b the eigenstates are very sparse. In this situation, the problem

can be studied by a real-space RG method that was developed in Ref. [46] for related

models and in Ref. [17] for the PRBM model. Within this approach, one starts from
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p
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Figure 4.1: The ratio Rp = ∆s
q(b, p)/∆

b
q (b) of the boundary and bulk anomalous mul-

tifractal exponents for large b, as a function of the reflection parameter p. Diamonds
represent the results of the σ-model analysis with a numerical solution of the corre-
sponding classical evolution equation, as described in Sec. 4.2.1. Circles represent a
direct computer simulation of the PRBM model, Eqs. (4.3), (4.4), see Sec. 4.3, with
b = 8. The ratio Rp has been evaluated for the range 0 < q < 1, where the numerical
accuracy of the anomalous multifractal exponents is the best. Within this interval,
Rp is q-independent (within numerical errors) in agreement with Eq. (4.17).
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the diagonal part of the Hamiltonian and then consecutively includes into consider-

ation non-diagonal matrix elements Hij with increasing distance ρ = |i − j|. The

central idea is that only rare events of resonances between pairs of remote states are

important, and that there is an exponential hierarchy of scales at which any given

state finds a resonance partner: ln ρ1 ∼ b−1, ln ρ2 ∼ b−2, . . . . This allows one to

formulate RG equations for evolution of quantities of interest with the “RG time”

t = ln ρ. We refer the reader for technical details of the derivation to Ref. [17] where

the evolution equation of the distribution f(Pq) of the inverse participation ratios,

Pq =
∑

r |ψ(r)|2q, as well as of the energy level correlation function, was derived. In

the present case, we are interested in the statistics of the local quantity, the wave

function intensity |ψ(r)|2 at a certain point r. Assuming first that r is in the bulk

and generalizing the derivation of Ref. [17], we get the evolution equation for the

corresponding distribution function f(y ≡ |ψ(r)|2),

∂f(y, ρ)

∂ ln ρ
=

2b

π

∫ π/2

0

dθ

sin2 θ cos2 θ

∫ ∞

−∞
dy′f(y′, ρ)

× [δ(y − y′ cos2 θ) + δ(y − y′ cos2 θ)− δ(y − y′)− δ(y)]. (4.20)

Equation (4.20) is written for β = 1; in the case of β = 2 one should make a replace-

ment b −→ (π/2
√

2)b. The physical meaning of Eq. (4.20) is rather transparent: its

right-hand side is a “collision integral” describing a resonant mixture of two states

with the intensities y′ and 0 at the point r, leading to formation of superposition

states with the intensities y′ cos2 θ and y′ sin2 θ. Multiplying Eq. (4.20) by yq and

integrating over y, we get the evolution equation for the moments 〈yq〉,

∂〈yq〉
∂ ln ρ

= −2bT (q)〈yq〉 , (4.21)
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where

T (q) =
1

π

∫ π/2

0

dθ

sin2 θ cos2 θ
(1− cos2q θ − sin2q θ) =

1

22q−3

Γ(2q − 1)

Γ(q)Γ(q − 1)
. (4.22)

The RG should be run until ρ reaches the system size L. Thus, the bulk multifractal

exponents are equal to

τbq = 2bT (q), (4.23)

in agreement with Ref. [17].

How will the evolution equation (4.20) be modified if the point r is located at

the boundary? First, the factor 2 in the right-hand side of (4.20) will be absent.

Indeed, this factor originated from the probability to encounter a resonance. In the

bulk, the resonance partner can be found either to the left or to the right, thus the

factor of two. For a state at the boundary only one of these possibilities remains, so

this factor is absent. Second, one should now take into account also the second term

in the variance Jij of the matrix element Hij , Eq. (4.4). In view of the hierarchy

of resonances described above, the relevant matrix elements will always connect two

points, one of which is much closer to the boundary than the other (say, i ≪ j). In

this situation, the two terms in (4.4) become equivalent (up to the prefactor p in the

second term) and can be combined,

Jij ≃
(1 + p)b2

j2
, i≪ j. (4.24)

Therefore, the effect of the second term amounts to the rescaling b −→ (1 + p)1/2b.

Combining both the effects, we get the boundary multifractal exponents,

τ s
q = (1 + p)1/2bT (q) =

(1 + p)1/2

2
τb
q . (4.25)
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The above real-space RG method works for q > 1/2, where the multifractal exponent

τq is small 1. The results can, however be extended to the range of q < 1/2 by using

the symmetry relation between the multifractal exponents [54],

∆q = ∆1−q. (4.26)

Independent of whether q is larger or smaller than 1/2, the obtained relation between

the boundary and the bulk multifractal spectra can be formulated in the following

way for the b≪ 1 case:

τ s
q (b, p) = τb

q (b −→ b(1 + p)1/2/2). (4.27)

4.3 Comparison with numerical simulations

The numerical work presented in this section was done by our collaborators A. Milden-

berger, F. Evers and A. D. Mirlin. The details of the numerical simuations can be

found in our joint publication [55]. Here we present only the results.

Fig. 4.2 illustrates nicely our main findings. We illustrate the dependence of the

anomalous multifractal dimension ∆2 ≡ D2−1 on b in the bulk and at the boundary,

for three different values of the reflection parameter p. It is seen, first of all, that the

bulk exponent ∆b
2 does not depend on p, in agreement with the theory. Second, the

boundary exponent ∆s
2 is different from the bulk one. Third, the boundary exponent

1. Strictly speaking, Eqs. (4.23), (4.22) are valid for all q > 1/2 in the limit b → 0. For
a finite (but small) b, Eq. (4.23) breaks down in a narrow interval of q above 1/2, namely for
q − 1/2 . 1/ ln b−1. Indeed, the evolution equation (4.20) assumes that resonances are rare, i.e.
that the angle θ describing the resonant mixture is large compared to its typical, non-resonant,
value ∼ b. On the other hand, when q approaches 1/2, the integral in Eq. (4.22) converges at
θ ∼ exp[−1/(q − 1/2)]. Comparing this with b, we get the above restriction on the validity of
Eq. (4.23).
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is not determined by b only, but rather depends on the boundary parameter p as

well. The lower panel of Fig. 4.2 demonstrates the agreement between the numerical

results and the analytical asymptotics of small and large b.

Having discussed the b-dependence of the fractal exponent with fixed q (equal to

2) shown in Fig. 4.2, we turn to Fig. 4.3, where the whole multifractal spectra ∆q are

shown for fixed large values of b. Specifically, the anomalous multifractal dimensions

∆s
q and ∆b

q are presented for b = 2, 4 and 8, with the reflection parameter chosen to be

p = 1. For all curves the q dependence is approximately parabolic, as predicted by the

large-b theory, Eqs. (4.16) and (4.17), with the prefactor inversely proportional to b.

To clearly demonstrate this, we plot in the lower two panels the exponents ∆q divided

by the corresponding analytical results of the large-b limit. While for moderately large

b the ratio shows some curvature, the latter disappears with increasing b and the

ratio approaches unity, thus demonstrating the full agreement between the numerical

simulations and the analytical predictions. It is also seen in Fig. 4.3 that the bulk

multifractal spectrum for b = 4 and the boundary spectrum for b = 8 are almost

identical, in agreement with Eq. (4.19). The same is true for the relation between the

bulk spectrum for b = 2 and the boundary spectrum for b = 4.

The ratio of the large-b boundary and bulk anomalous multifractal dimensions,

Rp = ∆s
q/∆

b
q , for several values of the reflection parameter, p = 0, 1 and 3 was also

calculated. As shown in Fig. 4.1, the results are in good agreement with the σ-model

predictions for Rp obtained in Sec. 4.2.1.

In Fig. 4.4 the boundary and bulk multifractal spectra are shown for the case

of small b. While the spectra are strongly non-parabolic in this limit, they clearly

exhibit the symmetry q → 1−q, Eq. (4.26). The data are in good agreement with the

RG results of Sec. 4.2.2. In particular, the boundary spectrum for p = 3 is essentially

identical to the bulk spectrum, as predicted by Eq. (4.27). In the inset, the boundary
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Figure 4.2: Upper panel: Anomalous multifractal exponent ∆2 ≡ D2−1 as a function
of b from numerical simulations in the bulk and at the boundary for the reflection
parameter p = 0 and 1. The inset shows data for p = 3 compared to the p = 0 bulk
values. Lower panel: Boundary and bulk data for p = 0 compared with analytical
results for small and large b (using R0 = 2.78), Eqs. (4.16), (4.17), (4.23), (4.25).
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Figure 4.3: Upper panel: Boundary and bulk multifractal spectra, ∆s
q and ∆b

q , at
b = 2, 4, and 8 for the reflection parameter p = 1. In accordance with Eq. (4.19),
the boundary multifractality spectrum is enhanced by a factor close to two compared
to the bulk. Middle panel: Boundary spectrum divided by the analytical large-b
result, Eq. (4.17). The dashed line represents the analytical result for b ≫ 1. With
increasing b, the numerical data nicely converges towards the analytical result. Lower
panel: Analogous plot for the bulk spectrum, Eq. (4.16). The error estimate from the
finite size extrapolation is 3%.



59

-0.5 0 0.5 1 1.5
q

-0.4

-0.2

0

0.2

∆ q
p=0, surface
p=1, surface
p=3, surface
p=0, bulk
p=1, bulk
p=3, bulk

-0.5 0 0.5 1 1.5
-0.4

0

Figure 4.4: Main panel: Numerically determined boundary and bulk anomalous mul-
tifractal dimensions ∆q at b = 0.1 for p = 0, 1, and 3. As expected, the bulk anoma-
lous multifractal dimension is independent of the value of p. In accordance with
Eq. (4.27), for p = 3 boundary and bulk dimensions have the same values. Inset:
The p = 0 data compared to the analytical results, boundary [solid line, Eq. (4.25)]
and bulk [dashed line, Eq. (4.23)]. Analytical data have been calculated for q ≥ 0.6
and mirrored for q ≤ 0.4 by using the symmetry relation ∆q = ∆1−q. Note that the

analytical result (4.23) breaks down in the vicinity of q = 1/2, at |q−1/2| . 1/ ln b−1,

see footnote [1]. At the boundary, one should replace b → b(1 + p)1/2/2 in this con-
dition. We see, indeed, that for b = 0.1, p = 0 the analytical formula works upto
|q − 1/2| ≃ 0.4 in the bulk and |q − 1/2| ≃ 0.3 at the boundary.
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and bulk multifractal spectra for p = 0 are compared with the analytical asymptotics,

Eqs. (4.23), (4.25), supplemented by the symmetry relation (4.26). Again, a very good

agreement is seen, except for a vicinity of q = 1/2, where Eqs. (4.23), (4.25) break

down (refer footnote [1]).



Chapter 5

2D Symplectic-Class Anderson Transition

In this chapter, we study boundary multifractality at the 2D LD transition for non-

interacting electrons with spin-orbit scattering (symplectic universality class) [56].

Numerical simulations done by our collaborators H. Obuse and A. Furusaki are used

to verify many of the predictions made in Chapter [2]. In particular we will verify the

hypothesis of conformal invariance itself at this critical point. The results described

in this chapter were reported in Ref. [57].

Let us first point out a number of important issues which have to be taken into

consideration when wave functions near boundaries and corners are studied. The

relation in Eq. (2.23) relating the boundary and corner anomalous multifractal di-

mensions implies the following relation for the Legendre-transformed variables defined

in Eq. (2.5):

αθq − 2 =
π

θ
(αs
q − 2), fθ(αθq) =

π

θ

[

f s(αs
q)− 1

]

. (5.1)

Eqs. (5.1) are valid only if αθq > 0, because α is non-negative for normalized wave

functions [17,58]. It is expected [17] that for q > qθ (where qθ is a solution to αθq = 0)

the exponents τθq become independent of q, while αθq = 0. With the definition Eq.

(2.3), this leads to a modified relation between ∆θ
q and ∆s

q:

∆θ
q =











π

θ
∆s
q, q < qθ,

π

θ
∆s
qθ
− 2(q − qθ), q > qθ.

(5.2)

We now discuss the numerical simulations done by our collaborators. The numer-

ical details for the simulations can be found in our joint publication [57]. Here we
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Figure 5.1: Probability distribution functions of logarithm of wave function intensities
in the bulk (black and red), in the boundary (blue), and in the corner region with
θ = π/2 (pink) and θ = π/4 (light blue); L = 120. Inset: Semi-logarithmic plot.

only summarize the results and their analysis.

Fig. 5.1 shows the probability distribution functions (PDFs) of ln |ψ(r)|2 mea-

sured for r at corners with angle θ = π/4 (light blue) and θ = π/2 (pink), at the

boundary (blue), and in the bulk (red and black) at a fixed system size L. Each PDF

is normalized in the region where it is defined. Clearly, the PDFs for bulk, boundary,

and corner with θ = π/2 and θ = π/4, are all different, and, in this order, the peak

position is shifted to the left, in agreement with the expectation that wave function

amplitudes should be smaller near edges. In the same order, the distributions be-

come broader with longer (presumably power-law) tails at |ψ(rx)|2L2 ≫ 1. This

means that for large q the moments |ψ(rx)|2q can become larger near edges (corners)

than in the bulk, as the higher moments are dominated by long tails [17].
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Figure 5.2: (a) Bulk (red), boundary(blue), corner θ = π/2 (pink), and whole sample
(orange) f(α) spectra, with error bars shown at integer values of q. Red, blue, and
pink curves represent fx(4−α)+α−2. Inset: Scaling plot of Eq. (5.3) at q = 1 (filled
circles) and q = 3 (open circles). (b) Corner f(α) spectra at θ = π/4 (light blue),
π/2 (pink), and 3π/4 (green), with error bars shown at integer q (and at q = −0.5
for θ = π/4). Curves represent the conformal relation (5.1). Inset: Numerical results
for αx

q compared with Eqs. (5.1) (colored curves).
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Numerically αx
q and fx(αx

q ) can be obtained using the relations

〈〈ln |ψ(rx)|2〉〉q ≡
|ψ(rx)|2q ln |ψ(rx)|2

|ψ(rx)|2q
∼ −αx

q lnL, (5.3)

ln |ψ(rx)|2q ∼
[

fx(αx
q)− αx

qq − dx
]

lnL. (5.4)

These follow directly from the definitions in Eq. (2.3), (2.5) and (2.6). Different

values of q in Eq. (5.3) give different We note that µx is zero since the density

of states does not show critical behavior at this transition. The inset of Fig. 5.2(a)

shows 〈〈ln |ψ|2〉〉q as functions of L, computed for bulk (x = b), boundary (x = s), and

corners (θ = π/2). This inset exhibits distinct scaling behavior for bulk, boundary,

and corner regions for the displayed values of q = 1 (filled circles) and q = 3 (empty

circles).

Fig. 5.2(a) shows fx(α) of the bulk, boundary, and corner (θ = π/2) regions.

Clearly, in this order, the spectra fx(α) are seen to become broader and their max-

ima αx
0 are shifted to the right in accordance with Fig. 5.1 and Eq. (2.6). (Recall that

the maximal values of fx(α) are the spatial dimensions dx.) The plot of fw(α) for

the whole sample with just boundaries and no corners (Fig. 5.2(a), orange) clearly

represents the convex hull of fb(α) and f s(α) as discussed in Sec. 2.2. Notice that

fw(α) deviates from fb(α) already at f(α) ≈ 1.5 (for q < 0). This confirms the

prediction in Chapter 2 that the presence of boundaries drastically affects the multi-

fractal spectrum of the system even in the thermodynamic limit and also in a typical

sample (where f(α) > 0) [17].

The data points of the bulk spectrum fb(α) [red dots in Fig. 5.2(a)] lie on top of

the red curve representing data for fb(αb
1−q) in Eq. (5.5). This confirms the following
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relation which is the consequence of the symmetry relation in Eq. (4.26):

fx(αx
1−q)−

αx
1−q
2

= fx(αx
q )−

αx
q

2
, αx

1−q = 4− αx
q , (5.5)

This in particular would seem to imply that αx cannot exceed 4. This is not true in

general for systems with boundaries and the symmetry relation cannot be used for

all values of q. Here we propose, as a refinement, that the symmetry relation in Eq.

(4.26) is valid for corners of any angle θ including θ = π (straight boundaries), but

only in the range of q satisfying 1−qθ 6 q 6 qθ, corresponding precisely [54,57] to the

range 0 6 αθq 6 4. Furthermore, we cannot make any statements about ∆θ
q for values

of q outside of this range. As mentioned before Eq. (5.2), the dependence on q of ∆θ
q

is linear for q > qθ (corresponding to the termination of the multifractal spectrum

[2]), whilst it may, in general, continue to be non-linear for q < 1 − qθ, even [57,54]

when αθq > 4.] Thus the boundary spectrum f s(α) (blue dots in Fig. 5.2(a)) is also

seen to satisfy the relation (5.5), but for the restricted range 1 . αs . 3. We note

that the numerical results for αθq exceed 4 when q . −0.1 for θ = π/4, and q . −0.7

for θ = π/2 [Fig. 5.2(b) and inset]. Even the maximum αθ0 of fθ(α) will exceed 4 for

sufficiently small angles θ. Thus, the numerical data strongly support our refinement

of the symmetry relation.

Figure 5.2(b) shows the corner spectra fθ(α) at θ = 3π/4 (green), π/2 (pink),

and π/4 (light blue). As θ decreases, the peak position moves to the right and the

spectra become broader, indicating that at smaller θ the typical value of a wave

function amplitude is smaller but its distribution is broader. The numerical data

(dots) are compared with the curves predicted from conformal invariance, Eq. (5.1),

using f s(αs) of Fig. 5.2(a) within the range 1 . αs . 3, where |q| is sufficiently small

to ensure good numerical accuracy. The agreement between the numerical data and
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the predicted curves is excellent, confirming the presence of conformal symmetry.

The inset of Fig. 5.2(b) shows αx
q where the curves represent αθq computed with

αs
q as input in Eq. (5.1). Note that αx = 2 at q = 1/2 as a consequence of Eq. (5.5).

We see that the numerical data for αθq deviate from the predicted curves, Eq. (5.1),

when αθq . 1, in order to satisfy the constraint αθq > 0. We expect that in the limit

L→∞, αθq be given by Eq. (5.1) for q < qθ and by αθq = 0 for q > qθ.

The anomalous multifractal dimensions ∆x
q are computed numerically from the

scaling |ψ(r)|2q /( |ψ(r)|2 )
q ∼ L−∆x

q , which follows from Eq. (2.3). Figure 5.3(a)

shows the bulk anomalous multifractal dimension ∆b
q (red) and its mirror image

across the q = 1/2 line ∆b
1−q (grey), both rescaled by q(1 − q). Note that this

rescaling magnifies small numerical errors around q = 0 and q = 1. Nevertheless the

numerical data in the bulk satisfy the symmetry relation in Eq. (4.26) for −1 < q < 2

where statistical errors are small. It is also clear from Fig. 5.3(a) that ∆b
q/[q(1− q)]

varies with q, which means that the bulk spectrum fb(α) is not exactly parabolic.

Figure 5.3(b) compares ∆x
q for bulk, boundary, and corners with θ = π/4, π/2, and

3π/4. The solid curves represent the theoretical prediction (5.2) from the conformal

mapping, where ∆s
q is taken from Fig. 5.3(b). For sufficiently small values of |q| the

numerical results of ∆θ
q are in good quantitative agreement with the prediction (5.2).

It is precisely for small |q| that the numerical data are most accurate 1. This provides

direct evidence for the presence of conformal symmetry at the symplectic-class LD

transition.

The inset of Fig. 5.3(b) shows the exponents τx
q for bulk, boundary, and corners.

We see that τ
π/4
q (light blue) is constant for q > qπ/4 ≈ 1 reflecting the exchange

1. For q & 1, Fig. 5.3(b) shows discrepancies between the numerical results and the prediction
from CFT, enhanced by the (1− q)−1 factor. In this range of q the moments of |ψ|2 are dominated
by rare events, which makes it difficult to obtain accurate numerical data.
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between top and bottom lines in Eq. (5.2) which happens at α
π/4
q = 0. It appears

that τ
π/4
q becomes smaller than both τ s

q and τb
q for q & 2.5, which is when the

corner exponent τ
π/4
q controls the multifractal spectrum of the whole sample with

a π/4 corner, as shown in black. In a sample without corners such as a cylinder,

the boundary exponent τsq controls the multifractal spectrum of the entire sample for

sufficiently large q. This confirms and generalizes the predictions made in Sec. 2.2.
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Figure 5.3: (a) The numerical data for the bulk exponents ∆b
q (red) are compared with

their mirror image ∆b
1−q (grey). The green line represents αb

0 −2. (b) The exponents

∆q/[q(1−q)] for the bulk (red), the boundary (blue), and corners with θ = π/4 (light
blue), π/2 (pink), and 3π/4 (green). The curves represent the theoretical prediction,
Eq. (5.2). Inset: Bulk (red), boundary (blue), and corner (θ = π/4, light blue)
exponents τx

q , and τw
q for a whole rhombus shaped sample with corners θ = π/4

(black).



Chapter 6

Integer Quantum Hall (IQH) Plateau Transition

The physics of the quantum Hall effect has been an exciting area of research for more

than two decades [59, 60]. While much progress has been made in this area, the

identification of an analytically tractable theory describing the critical properties at

the transitions between the plateaus in the integer quantum Hall (IQH) effect has

been elusive ever since [5,61]. These quantum phase transitions are famous examples

of LD transitions driven by disorder. The diverging localization length plays the

role of a correlation length in non-random continuous phase transitions, known to be

described by conformal field theories in two dimensions (2D). It is natural to expect

that effective (field) theories describing IQH plateau transitions should generally also

possess conformal symmetry (see also Ref. [57,62]).

Many attempts have been made in the past to identify such an analytically

tractable description of the IQH plateau transition and, more recently, Wess-Zumino

(WZ) field theories defined on a certain supermanifold were conjectured to provide

such a description [63- 66]. (Similar theories have also appeared in the context of

string propagation in Anti-de Sitter space-time [67, 68].) These proposals focussed

solely on bulk observables, i.e., on physical quantities measured in a sample without

any boundaries. In this chapter, we highlight important new constraints that arise

when one studies the scaling behavior of wave functions near the boundaries of a

sample. Any proposed candidate theory for the plateau transitions will have to be

consistent with our analysis of the numerical simulations (done by our collaborators,

H. Obuse and A. Furusaki) for the boundary multifractal spectrum.

Work emerging [69, 70] from Ref. [63] led to the conjecture that the proposed

theory would give rise to an exactly parabolic bulk multifractal spectrum for the IQH

69
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transition,

∆b
q = γbq(1− q), (6.1)

reminiscent of analytically obtained multifractal spectra for Dirac fermions in, e.g.,

random abelian gauge potentials [10,71]. In those models the parabolicity of the τbq

spectrum can be understood through a reformulation of the problem in terms of free

fields.

Previous numerical studies [70] of wave function statistics at the IQH transition

appeared to exhibit a bulk multifractal spectrum that was indeed well described

(with an accuracy of ∼1%) by a parabolic fit (6.1) with γb = 0.262±0.003, seemingly

providing support for the conjectures advanced in Ref. [63- 66]. (In Ref. [70] the

results are presented in terms of f b(α). For a parabolic multifractal spectrum such

as the one in Eq. (6.1), f b(αb) is also parabolic, with a maximum at αb0 = γb + 2.)

Besides its conjectured relevance [63] to the IQH transition, the above-mentioned

Wess-Zumino theory is known to describe transport properties of a disordered elec-

tronic system in a different universality class [72-74] (the chiral unitary ‘Gade-Wegner’

class AIII of [8,7]) which possesses an additional discrete (chiral) symmetry [8], not

present in microscopic models for the IQH transition. Well-known microscopic re-

alizations of field theories in class AIII are random bipartite hopping models, and

certain network models [72-74,75]. The theory possesses a line of fixed points, with

continuously varying critical properties parametrized by the critical longitudinal DC

conductivity. (It was argued in Ref. [63] that for a particular value of this continuous

parameter the Wess-Zumino theory would provide a description of the IQH transi-

tion.)

Here we summarize results of numerical work done by our collaborators on the
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multifractal exponents at the IQH transition both at a boundary (∆s
q) and in the

bulk (∆b
q). Based on these numerical results quadratic behavior in q is ruled out

for both quantities. Deviations from the parabolic form in Eq. (6.1) are found to be

much larger in the multifractal exponents ∆s
q at a boundary. Here it is important

to note that in complete analogy to the bulk, the above conjectures would also yield

a quadratic dependence on q of the boundary multifractal exponents ∆s
q. The ratio

∆s
q/∆b

q was also studied over a range of q. Accounting for this ratio is an important

constraint on any proposed critical theory for the transition.

The multifractality of critical wave functions were studied in a way similar to Ref.

[70], with the goal of numerically determining the rescaled anomalous exponents

γxq = ∆x
q /q(1− q), (6.2)

both for x = s (boundary) and x = b (bulk).

For the case of boundary exponents we consider the critical Chalker-Coddington

network model [24] placed on a cylinder. The dynamics of wave functions on links

of the network is governed by a unitary evolution operator U . For each disorder

realization, U was numerically diagonalized. The details of the numerical work done

by our collaborators can be found in Ref. [76]. The anomalous dimensions ∆s
q were

determined from the system size dependence of the boundary wave function intensity

and its moments. Independently, αsq and fs(αsq) were numerically obtained from

|ψ(r)|2q ln |ψ(r)|2/|ψ(r)|2q ∼ −αsq lnL, and ln |ψ(r)|2q ∼
[

fs(αsq)− αsqq −Ds
]

lnL,.

We show in Fig. 6.1(a) the rescaled boundary anomalous dimension γsq (red filled

circles) obtained from the numerical analysis. We see clearly that γsq is not constant,

implying that the boundary multifractal spectrum ∆s
q is not parabolic. The change in

γsq over the interval 0 < q 6 1/2 is about 4 ∼ 5% and is significantly larger than the
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Figure 6.1: (a) Rescaled boundary multifractal exponents γsq (•) and γs1−q (◦). The

curve is 0.370 + 0.042(q− 1/2)2, obtained by fitting the data for γsq in 0 < q < 1 to a
parabolic form. The horizontal solid line shows αs0−2 = 0.386±0.004 with error bars
indicated by dashed lines, which is consistent with limq→0,1 γ

s
q . (b) Rescaled bulk

multifractal exponents γbq (•) and γb1−q (◦). The curve is 0.2599 + 0.0065(q − 1/2)2

obtained by fitting the data for γbq in 0 < q < 1 to a parabolic form. The horizontal

solid line shows αb0 − 2 = 0.2617± 0.0006 with error bars indicated by dashed lines.

(c) Ratios γsq/γ
b
q (•) and γs1−q/γ

b
1−q (◦). As above, the curve is obtained from the

parabolic fits for γ
s,b
q , which amounts to quartic approximations for ∆

s,b
q .



73

error bars. This provides the strongest numerical evidence against the parabolicity

of the multifractal exponents.

Shown in the same figure by blue open circles is the mirror image of γsq with respect

to q = 1/2, γs1−q. We see that the symmetry relation Eq. (4.26) is satisfied within

error bars for 0 . q . 1. The rescaled anomalous dimension γsq approaches αs0 − 2

(the horizontal line) at q = 0, 1, indicating that the two independent calculations

of αs0 and ∆s
q are consistent. The bulk anomalous dimension ∆b

q was also studied

numerically using the Chalker-Coddington network model on a torus.

Fig. 6.1(b) shows the exponents γbq, together with their mirror image. The sym-

metry relation Eq. (4.26) is again satisfied for 0 . q . 1 within error bars, which

provides confirmation that the numerical results are reliable. We see clearly that γbq

has q dependence, although it is weaker than that of γsq ; compare the vertical scales

of Fig. 6.1(a) and (b).

The ratio γsq/γ
b
q is shown in Fig. 6.1(c) and is seen to be clearly dependent on q.

Any candidate theory for the IQH transition needs to be consistent with this ratio,

and in particular its dependence on q. (Note that for a free field this ratio would be

equal to 2, and independent of q [16,12].)

Fig. 6.2(a) shows αxq as a function of q. The data significantly deviate from linear

behavior that would result if ∆x
q were strictly parabolic (constant γxq ). In Fig. 6.2(b)

we show the corresponding singularity spectra fx(αxq ) as functions of q. (Combining

the data from the two panels would result in fx(αx) as functions of αx.) For q & 1.5

where fs(αs) < 0, the moments |ψ(r)|2q are dominated by rare events, and thus

accurate numerical calculation of multifractal exponents becomes more difficult [2].

This explains the discrepancy between the (red) data points and the solid curves for

q & 1.5 in Fig. 6.2. As fsq > 0 at q & −1, we expect that the numerical results

for fs(αs) should be more reliable at q ≈ −1 than at q ≈ 1.5, as evidenced by the



74

Figure 6.2: (a) αsq (•) and αbq (◦) as functions of q; (b) fsq (•) and f bq (◦) as functions
of q. The solid and dashed curves on both panels are obtained from the parabolic
approximations to γxq (that is, quartic approximations to ∆x

q ). Notice that αxq signif-
icantly deviate from straight lines which would follow from strictly parabolic ∆x

q (or
constant γxq ).

agreement between the red dots and the solid curve in Fig. 6.2. The curve suggests

termination of fs(αs) [2] to occur at q ≈ 2.2.

These numerical results clearly demonstrate that both, the boundary and the

bulk multifractal spectra, ∆s
q and ∆b

q, significantly deviate from parabolicity, and

that their q-dependent ratio is significantly different from 2. (These conclusions were

recently also reached, independently, by Evers, Mildenberger, and Mirlin [77].) These

results for the bulk as well as the boundary multifractal spectra impose important

constraints on any analytical theory for the IQH plateau transition.



Chapter 7

Multifractality and Entanglement Entropy

Entanglement is a unique feature of a quantum system and entanglement entropy,

defined through the von Neumann entropy (vNE) measure, is one of the most widely

used quantitative measures of entanglement [78 - 81]. Consider a composite system

that can be partitioned into two subsystems A and B. The von Neumann entropy

of either of the subsystems is sA = −TrAρA ln ρA = sB = −TrBρB ln ρB. Here, the

reduced density matrix ρA is obtained by tracing over the degrees of freedom in B:

ρA = TrB|ψAB〉〈ψAB| and similarly for ρB . In general, for a pure state |ψAB〉 of a

composite system, the reduced density matrix is a mixture, and the corresponding

entropy is a good measure of entanglement.

The scaling behavior of entanglement entropy is a particularly useful character-

ization near a quantum phase transition [80]. The entanglement entropy can show

nonanalyticity at the phase transition even when the ground state energy (the quan-

tum analog of the classical free energy) is analytic. While these ideas have been

studied in a number of translation-invariant models [79, 80, 82], there have been far

fewer investigations of random quantum critical points (for notable exceptions, see

[83,84]). Here we study von Neumann entropy at the Anderson transition in 3D and

the IQH plateau transition. Von Neumann entropy will be shown to exhibit non-

analyticity at these transitions and a scaling behavior. At the outset, it should be

emphasized that because of the single particle and disorder-dominated nature of these

quantum phase transitions, entanglement as characterized by von Neumann entropy

and its critical scaling behavior are fundamentally different from those calculated for

interacting systems. This statement will be made more precise later.
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Near the LD transition, the generalized inverse participation ratios, Pq obey,

Pq(E) ≡
∑

r

|ψE(r)|2q ∼ L−τq Fq
[

(E − EC)L1/ν]. (7.1)

Here, L is the system size, ν is the exponent characterizing the divergence of correla-

tion length, ξE ∼ |E − EC |−ν. This is a generalized version of Eq. (2.2) valid when

we move away from the LD critical point by studying wave functions at different

energy E. Fq(x) is a scaling function with Fq(x→ 0) = 1 close to the critical point

E = EC . When E is tuned away from EC , the system either tends towards an ideal

metallic state with Pq(E) ∼ L−d(q−1) (d being the number of spatial dimensions) or

becomes localized with Pq(E) independent of L.

Below, we first show that the disorder-averaged von Neumann entropy can be

expressed as a derivative of Pq and thus, its scaling behavior follows from multifractal

analysis. After that, we apply our formalism to understand the numerical results on

von Neumann entropy at the three dimensional Anderson localization transition and

the IQH plateau transition. Von Neumann entropy in the Anderson localization

problem was studied previously [81,85], but the connection with mulitfractality and

the unique features of von Neumann entropy at these quantum phase transitions have

not been clearly elucidated.

7.1 Entanglement entropy near LD transitions

Even though the disorder induced localization problem can be studied in a single

particle quantum mechanics language, there is no obvious way to define entanglement

entropy in this picture. However (see Ref. [86]), entanglement can be defined using

the site occupation number basis in the second-quantized Fock space. Let us divide
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the lattice of linear size L into two regions, A and B. A single particle eigenstate of

a lattice Hamiltonian at energy E is represented in the site occupation number basis

as

|ψE〉 =
∑

r∈Ac↑B
ψE(r) |1〉r

⊗

r′ 6=r
|0〉r′ (7.2)

Here ψE(r) is the normalized single particle wave function at site r and |n〉r denotes

a state having n particles at site r. We decompose the above sum over lattice sites r

into the mutually orthogonal terms,

|ψE〉 = |1〉A ⊗ |0〉B + |0〉A ⊗ |1〉B (7.3)

where

|1〉A =
∑

r∈A
ψE(r)|1〉r

⊗

r′ 6=r
|0〉r′, |0〉A =

⊗

r∈A
|0〉r (7.4)

with analogous expressions for the |1〉B and |0〉B states. Notice that these states have

the normalization

〈0|0〉A = 〈0|0〉B = 1, 〈1|1〉A = pA, 〈1|1〉B = pB , (7.5)

where

pA =
∑

r∈A
|ψE(r)|2, (7.6)

and similarly for pB with pA + pB = 1.

To obtain the reduced density matrix ρA, we trace out the Hilbert space over B
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in the density matrix ρ = |ψE〉〈ψE |. This gives,

ρA = |1〉A〈1|+ pB |0〉A〈0|. (7.7)

The corresponding von Neumann entropy is given by

sA = −pA ln pA − pB ln pB. (7.8)

In the above equation, we see that manifestly sA = sB. More importantly, sA is

bounded between 0 and ln 2 for any eigenstate. This is in sharp contrast to the

entanglement entropy in interacting quantum systems where it can be arbitrarily

large near the critical point. The reason for this is also clear: Even though we used a

second-quantized language, we are dealing with a single particle state rather than a

many body correlated state. Consequently, the entanglement entropy does not grow

arbitrarily large as a function of the size of A.

We also observe that at criticality, if the whole system size becomes very large

in comparison with the subsystem A, we can restrict the subsystem to be a single

lattice site and study the scaling dependence with respect to the overall system size

L. Then, using the ansatz of scale invariance, we can always find the scaling of the

entanglement as a function of the subsystem size l since near criticality, only the

dimensionless ratio L/l can enter any physical quantity. To extract scaling, we find

the bipartite entanglement of a single site r with the rest of the system and sum this

over all lattice sites in the system. Using Eq. (7.8), we write this as

S(E) = −
∑

r∈Ld

{

|ψE(r)|2 ln |ψE(r)|2 +
[

1− |ψE(r)|2
]

ln
[

1− |ψE(r)|2
]}

. (7.9)
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To leading order, the second term inside the square bracket in Eq. (7.9) can be

dropped since |ψE(r)|2 ≪ 1 at all points r when the states are close to the critical

energy. We can readily relate the disorder average (denoted by overbar) of this entropy

to the multifractal scaling in Eq. (7.1) and get the L scaling as

S(E) ≈ −dPq
dq

∣

∣

∣

∣

q=1
≈ dτq

dq

∣

∣

∣

∣

q=1
lnL− ∂Fq

∂q

∣

∣

∣

∣

q=1
. (7.10)

We do not know the general form of the scaling function Fq, but we can get the

approximate L dependence of the entropy in various limiting cases. For the exactly

critical case when Fq ≡ 1 for all values of q, we get

S(E) ∼ α1 lnL, (7.11)

where the constant α1 = dτq/dq|q=1 is unique for each universality class. From

the discussion following Eq. (7.1), the leading scaling behavior of S(E) in the ideal

metallic and localized states is given by d lnL and α1 ln ξE , respectively. From the

limiting cases, we see that, in general, S(E) has the approximate form

S(E) ∼ K[(E −EC)L1/ν ] lnL, (7.12)

where the coefficient function K(x) decreases from d in the metallic state to α1 at

criticality and then drops to zero for the localized state. We will see that this scaling

form is verified in numerical simulations done by our collaborators.
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7.2 Entanglement in the 3D Anderson model

The scaling form for the entanglement entropy averaged over all eigenstates of the

single particle Hamiltonian is also of interest since this scaling can change as a function

of disorder strength. To be specific, let us consider the 3D Anderson model on a cubic

lattice. The Hamiltonian is

H =
∑

i

Vic
†
ici − t

∑

〈i,j〉
(c
†
icj +H.c.), (7.13)

where c
†
i (ci) is the fermionic creation (annihilation) operator at site i of the lattice,

and the second sum is over all nearest neighbors. We set t = 1, and the Vi are random

variables uniformly distributed in the range [−W/2,W/2]. It is known [87] that as

W is decreased from a very high value, extended states appear at the band center

below the critical disorder strength Wc = 16.3, and a recent work [88] reported the

localization length exponent ν = 1.57± 0.03.

The analysis leading to Eq. (7.12) also holds when we study wave functions at a

single energy, say E = 0 and increase the disorder strength in the Anderson model

across the critical value Wc. In this case, the states at E = 0 evolve continuously

from fully metallic to critical and then finally localized, resulting in the approximate

form for the entanglement entropy as

S(E = 0, w, L) ∼ C(wL1/ν) lnL, (7.14)

where w = (W −Wc)/Wc is the normalized relative disorder strength and C(x) is a

scaling function. In particular, as mentioned before, C(x)→ d as w → −1, C(x)→ 0

as w →∞, and C(x) = α1 when w = 0.
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Figure 7.1: Scaling curve for the entanglement entropy in the 3D Anderson model.
With the choice of ν = 1.57 and C = 12.96, all data collapse to a universal functions
f±(x). The two branches correspond to w < 0 and w > 0.

Next, we look at the energy-averaged entropy. We average Eq. (7.10) over the

entire band of energy eigenvalues and construct the von Neumann entropy,

S(w,L) =
1

L3

∑

E

S(E,w, L), (7.15)

where L3 is also the total number of states in the band. Then using Eqs. (7.12) and

(7.14), one can show that close to w = 0,

S(w,L) ∼ C + L−1/νf±
(

wL1/ν) lnL, (7.16)

where C is an L independent constant, and f±(x) are two universal functions corre-

sponding to the two regimes w > 0 and w < 0.
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Figure 7.2: Entanglement entropy S(E,W,L) as a function of energy E and disorder
strength W computed in a system with L = 10. The square shows the mobility edge
reported in Ref. [91]. Because of the finiteness of the system, the transition from the
localized to the delocalized region is smooth.

We now apply the above analysis to the numerical simulations done by our collabo-

rators Xun Jia and Sudip Chakravarty. The Hamiltonian Eq. (7.13) was diagonalized

numerically in a finite L×L×L system with periodic boundary conditions. The scal-

ing form of S(w,L) is given by Eq. (7.16). Fig. 7.1 shows the results of the data

collapse with a choice of ν = 1.57, and the non-universal constant C = 12.96 is de-

termined by an algorithm described in Ref. [89]. The successful data collapse reflects

the non-analyticity of the von Neumann entropy and accuracy of the multifractal

analysis.

Then the transfer matrix method [90] is used to study the energy dependence of

S(E,w, L) by considering a quasi-one-dimensional (quasi-1D) system with a size of

(mL) × L × L, m≫ 1. A typical S(E,W,L) with L = 10 is shown in Fig. 7.2. The



83

-0.5 0.0 0.5 1.0

0.5

1.0

1.5

2.0

2.5

3.0

2.0 2.4 2.8

4.0

8.0

 

 

C
(w

)

w

 W=  5.0
 W=16.5
 W=35.0 

 

 

S(
E=

0)

ln L

Figure 7.3: The quantity C in Eq. (7.14). The range of the system sizes is too small
to observe the weak L dependence. Inset: S(E = 0,W, L) as a function of lnL for
three different W .

value of S(E,W,L) is normalized by ln(L3) such that S → 1 in a fully extended state.

The energy E is normalized by (W/2+6), which is the energy range of nonzero density

of states [92]. The mobility edge computed in Ref. [91] is also plotted in Fig. 7.2.

The validity of the scaling form in Eq. (7.14) is seen in Fig. 7.3. In particular, the

function C(x) shows the expected behavior.

7.3 Entanglement in the IQH system

We now consider now the second example, the integer quantum Hall system in a

magnetic field B which was again numerically simulated by our collaborators. The

computation of the von Neumann entropy for a given eigenstate follows the same pro-

cedure described for the Anderson localization. The von Neumann entropy S(E,L) is
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Figure 7.4: Scaling of the von Neumann entropy S(E) for the IQHE. M stands for
the linear system size. The data collapse with the accepted value of ν = 2.33.

obtained at a particular energy E. The scaling form of S(E,L) is given by Eq. (7.12)

with EC = 0 and is S(E,L) = K(|E|L1/ν) lnL. A good agreement with numerical

simulations is seen in Fig. 7.4.



Chapter 8

Conclusions and Outlook

In this thesis, we have introduced the concept of boundary multifractality at LD tran-

sitions and studied it both from a general perspective and also at various specific LD

critical points. New features specific to boundary criticality were discussed. Analyt-

ical predictions were confronted with numerical simulations and excellent agreement

was found in all the cases considered.

One of the motivations to study boundary multifractality at two dimensional LD

transitions was that it might provide insights into the unsolved critical theories for the

IQH plateau transition and the symplectic transition. Our work clearly demonstrates

that possible candidates for these critical theories would be quite distinct from various

simple free field based theories many of which have the ratio of boundary to bulk

critical exponents as two. Infact, ongoing work seems to confirm this to be the case

with Dirac fermions in random gauge fields. In this case, the problem has a free field

based formulation. An important challenge is to identify 2D conformal field theories

which are plausible candidates for LD critical points (having supersymmetry, non-

unitarity etc.) and at the same time have a ratio of the boundary exponents to

bulk exponents different from two. The numerical analysis done jointly with our

collaborators indicates that the critical theories should also have a non-parabolic

multifractal spectrum which is not typically the case with free-field based formulations

of LD critical points.

Another important future line of research is to broaden the scope of boundary

multifractality outside the domain of LD transitions. Multifractality is a very general

scaling behavior observed in a wide variety of physical systems such as in random

magnets and turbulence. One can systematically analyze boundary effects on multi-
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fractality in these problems. Given the rich features discovered at different LD critical

points when boundary multifractality was studied, it will not be surprising if the same

holds true in these other problems too.



Appendix A

Representations of sl(2|1) Superalgebra

In this appendix, we list relevant features of sl(2|1) superalgebra representations that

are useful in studying the spin quantum Hall critical point, both in the bulk and at

the boundary.

The sl(2|1) superalgebra has eight generators, of which four are bosonic (B, Q3,

Q+, Q−) and four are fermionic (V+, V−,W+,W−). We use the convention of Ref. [93]

for the generators. These satisfy the same commutation ([, ]) and anticommutation

({, }) relations as the generators of osp(2|2) superalgebra:

[B,Q3] = [B,Q±] = 0,

[B, V±] =
1

2
V±, [B,W±] = −1

2
W±,

[Q3, Q±] = ±Q±, [Q+, Q−] = 2Q3,

[Q3, V±] = ±1

2
V±, [Q3,W±] = ±1

2
W±,

[Q+, V−] = V+, [Q+,W−] = W+,

[Q−, V+] = V−, [Q−,W+] = W−,

[Q+, V+] = [Q+,W+] = [Q−, V−] = [Q−,W−] = 0,

{V+, V−} = {W+,W−} = 0,

{V+,W+} = Q+, {V+,W−} = B −Q3,

{V−,W−} = −Q−, {V−,W+} = −B −Q3. (A.1)

An important subalgebra is gl(1|1) formed by the generators (B,Q3, V−,W+).

This is the SUSY present in the SQH network at finite broadening γ, when z =

e−γ < 1 [see Eqs. (3.4) and (3.5)], as well as at an absorbing boundary.
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Figure A.1: Weight diagrams of sl(2|1). We show two doublets and the adjoint of the
subalgebra gl(1|1) in the adjoint representation diagram.

The sl(2|1) algebra has an oscillator realization formed by bilinear combinations

of the fermion and boson operators on each link that are SU(2) singlets. For the

up-links the oscillator representation is:

Q3 =
1

2
(f
†
↑f↑ + f

†
↓f↓ − 1),

Q+ = f
†
↑f
†
↓ , Q− = f↓f↑,

B =
1

2
(b
†
↑b↑ + b

†
↓b↓ + 1),

V+ =
1√
2
(b
†
↑f
†
↓ − b

†
↓f
†
↑),

V− = − 1√
2
(b
†
↑f↑ + b

†
↓f↓),

W+ =
1√
2
(f
†
↑b↑ + f

†
↓b↓),

W− =
1√
2
(b↑f↓ − b↓f↑). (A.2)
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These operators act irreducibly in the fundamental three-dimensional representa-

tion of sl(2|1) (denoted by 3) with the space of states spanned by three SU(2) singlet

states which we denote as |m〉, m = 0, 1, 2:

|0〉 = |vacuum〉, (A.3)

|1〉 = V+|0〉 =
1√
2
(b
†
↑f
†
↓ − b

†
↓f
†
↑)|0〉, (A.4)

|2〉 = Q+|0〉 = f
†
↑f
†
↓ |0〉. (A.5)

We need the matrix elements of the sl(2|1) generators between the states in 3.

The non-zero matrix elements are easy to find from the following equations giving

the action of the generators on the states:

Q3|0〉 = −1

2
|0〉, Q3|1〉 = 0, Q3|2〉 =

1

2
|2〉,

B|0〉 =
1

2
|0〉, B|1〉 = |1〉, B|2〉 =

1

2
|2〉,

Q+|0〉 = |2〉, Q−|2〉 = |0〉,

V+|0〉 = |1〉, V−|2〉 = −|1〉,

W+|1〉 = |2〉, W−|1〉 = |0〉. (A.6)

These equations give us the matrices of the generators of sl(2|1) in the fundamental

representation (for a generator G the matrix elements Gij , i, j = 1, 2, 3, are defined
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by G|i〉 =
∑

j Gji|j〉):

B =













1/2 0 0

0 1 0

0 0 1/2













, Q3 =













−1/2 0 0

0 0 0

0 0 1/2













,

Q+ =













0 0 0

0 0 0

1 0 0













, Q− =













0 0 1

0 0 0

0 0 0













,

V+ =













0 0 0

1 0 0

0 0 0













, W− =













0 1 0

0 0 0

0 0 0













,

V− =













0 0 0

0 0 −1

0 0 0













, W+ =













0 0 0

0 0 0

0 1 0













. (A.7)

In Fig. A.1 we give the weight diagrams for the fundamental and adjoint repre-

sentations which are useful for understanding some of our arguments.

For the down-links the construction is similar. The oscillator realization of the
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sl(2|1) generators is now

Q̄3 =
1

2
(f̄
†
↑ f̄↑ + f̄

†
↓ f̄↓ + 1),

Q̄+ = f̄↓f̄↑, Q̄− = f̄
†
↑ f̄
†
↓ ,

B̄ = −1

2
(b̄
†
↑b̄↑ + b̄

†
↓b̄↓ + 1),

V̄+ =
1√
2
(b̄↓f̄↑ − b̄↑f̄↓),

V̄− =
1√
2
(f̄
†
↑ b̄↑ + f̄

†
↓ b̄↓),

W̄+ = − 1√
2
(b̄
†
↑f̄↑ + b̄

†
↓f̄↓),

W̄− =
1√
2
(b̄
†
↓f̄
†
↑ − b̄

†
↑f̄
†
↓). (A.8)

These operators satisfy the same commutation relations as the ones on the up-links

and act in the three-dimensional space spanned by the SU(2) singlets

|0̄〉 = |vacuum〉,

|1̄〉 = −W̄−|0̄〉 =
1√
2
(b̄
†
↑f̄
†
↓ − b̄

†
↓f̄
†
↑)|0̄〉,

|2̄〉 = −Q̄−|0〉 = −f̄†↑ f̄
†
↓ |0̄〉. (A.9)

These singlets form the representation 3̄ of the sl(2|1) algebra dual to the fundamental

3. Note that the state |1̄〉 contains odd number of fermions, and, therefore, has

negative square norm:

〈1̄|1̄〉 = −1. (A.10)

The action of the generators on the states in the representation 3̄ is easily found
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to be

Q̄3|0̄〉 =
1

2
|0̄〉, Q̄3|1̄〉 = 0, Q̄3|2̄〉 = −1

2
|2̄〉,

B̄|0̄〉 = −1

2
|0̄〉, B̄|1̄〉 = −|1̄〉, B̄|2̄〉 = −1

2
|2̄〉,

Q̄+|2̄〉 = −|0̄〉, Q̄−|0̄〉 = −|2̄〉,

V̄+|1̄〉 = |0̄〉, V̄−|1̄〉 = −|2̄〉,

W̄+|2̄〉 = −|1̄〉, W̄−|0̄〉 = −|1̄〉. (A.11)

This gives the matrices for the generators in 3̄:

B̄ =













−1/2 0 0

0 −1 0

0 0 −1/2













, Q̄3 =













1/2 0 0

0 0 0

0 0 −1/2













,

Q̄+ =













0 0 −1

0 0 0

0 0 0













, Q̄− =













0 0 0

0 0 0

−1 0 0













,

V̄+ =













0 1 0

0 0 0

0 0 0













, W̄− =













0 0 0

−1 0 0

0 0 0













,

V̄− =













0 0 0

0 0 0

0 −1 0













, W̄+ =













0 0 0

0 0 −1

0 0 0













. (A.12)



Appendix B

Boundary Supersymmetry at the Spin Quantum Hall

Transition

We demonstrate in this appendix that the introduction of a reflecting boundary pre-

serves the full sl(2|1) supersymmetry (SUSY) at the spin quantum Hall critical point.

First we note some useful relations satisfied by the bosons and fermions defined

in Sec. 3.3. For any function F , all bosons and fermions (denoted by c, c†) except the

negative norm ones satisfy the commutation relations,

[c, :F (c†, c) :] =:

−−→
∂

∂c†
F (c†, c) :,

[

c†, :F (c†, c) :
]

= − :F (c†, c)
←−
∂

∂c
:, (B.1)

where the : : denotes normal ordering. The negative norm operators satisfy,

[c, :F (c†, c) :] = − :

−−→
∂

∂c†
F (c†, c) :,

[

c†, :F (c†, c) :
]

=:F (c†, c)
←−
∂

∂c
: . (B.2)

One can first write the transfer matrix for a single A node in the bulk [94]. Since

the scattering at the node is diagonal in spin indices [see Eq. (3.1)], the node transfer

matrices are products of two independent transfer matrices for each spin direction:

TA =
∏

σ=↑,↓
TAσ = TA↑TA↓. (B.3)
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where

TAσ = exp
(

tAσ(f
†
σ f̄
†
σ + b

†
σ b̄
†
σ)
)

(1− t2Aσ)
1

2
nσ

× exp
(

−tAσ(f̄σfσ + b̄σbσ)
)

, (B.4)

nσ = nfσ + nbσ + nf̄σ + nb̄σ. (B.5)

Let us also introduce the following notation:

T+ =
∏

σ

exp
(

tAσ(f
†
σf̄
†
σ + b

†
σ b̄
†
σ)
)

, (B.6)

T0 =
∏

σ

(1− t2Aσ)
1

2
nσ , (B.7)

T− =
∏

σ

exp
(

−tAσ(f̄σfσ + b̄σbσ)
)

, (B.8)

so that TA = T+T0T−.

The three terms correspond respectively to the creation, propagation and de-

struction of boson and fermions on evolution along the vertical direction. Similar

expressions can also be written for the B nodes. In the spin-rotation invariant case,

using the relations in Eqs. (B.1) and (B.2), for any particular realization of the disor-

der in the scattering matrices, it can be checked that each node transfer matrix in Eq.

(B.3) commutes with the sum of the eight generators of the superalgebra sl(2|1) ∼=

osp(2|2) (see Appendix A) defined on the up link and down link on which the node

transfer matrix acts.

Having defined the bulk node transfer matrices, we now consider the network on

a semi-infinite half-plane with a fully reflecting boundary either along the horizontal

direction or the vertical direction. Although it is clear that physical quantities cannot

depend on whether the boundary is defined along the horizontal or the vertical di-
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rection, the two cases have to be studied very differently within the second-quantized

formalism. This is because of the fact that we have singled out the vertical direction

as time and the tensor product of Fock spaces on which UA and UB act is defined

along a particular horizontal row of links. For definiteness, let us assume that the

boundary is always composed of A nodes.

We first consider the case of a reflecting boundary along the vertical (time) di-

rection as shown in Fig. 3.1. In this case, we retain the periodic boundary condition

along the time direction and hence also the supertrace STr in the correlation functions.

Only the node transfer matrices on the boundary have to be changed to account for

the complete reflection at the boundary. This can be implemented by setting tA = 0

in Eq. (B.4). In this case, the boundary node transfer matrix reduces to the trivial

identity operator. Consequently the operators UA and UB still commute with all

generators of the sl(2|1) superalgebra.

As mentioned before, we could have equivalently chosen the boundary to be along

the horizontal space direction, that is along a single time slice. In this case, we will

have to first replace the supertrace STr with the matrix element with respect to the

global vacuum state |0〉. Next we will have to modify all the node transfer matrices

along the boundary by setting tA = 1 in Eq. (B.4) and also consider only T+ since

no bosons or fermions can be created or propagated across the boundary. Note that

the 90· rotation of the boundary changes the corresponding tA. Hence the single spin

single node transfer matrix at the boundary is:

TA =
∏

σ

exp
[

(f
†
σf̄
†
σ + b

†
σ b̄
†
σ)
]

. (B.9)

This operator commutes only with the four elements, B+ B̄, Q3 + Q̄3,W+ + W̄+ and

V− + V̄− which form the subalgebra gl(1|1). This seems to contradict the previous
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observation that a reflecting boundary along the vertical direction preserves the full

sl(2|1) SUSY. This is reconciled by the fact that in the former case, we took the

supertrace STr with a trivial boundary node transfer matrix while here we need to

consider the action of the boundary transfer matrix TA in Eq. (B.9) on the global

vacuum |0〉. Using the relations in Eq. (B.1) and (B.2), we can check that the state

TA|0〉 is a singlet under the action of the sl(2|1) symmetry on the two links involved.

That is, it is annihilated by the sum over two links of all eight generators of the

sl(2|1) superalgebra. Thus the full supersymmetry is restored within a lattice spacing

from the boundary and the result matches with the previous case. For simplicity, in

the main text, we always assume that the boundary is along the vertical direction

as shown in Fig. 3.1. This enables us to retain the global supertrace STr in all the

expressions.
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